Integral abutment bridges (IABs) provide a viable solution to address durability concerns associated with bearings and expansion joints. Yet, they present challenges in optimizing pile foundation design, particularly concerning horizontal stiffness. While previous studies have focused on the behaviour of various piles supporting IABs in non-liquefied soils under cyclic loading, research on their seismic performance in liquefied soils remains limited. This study addresses the gap by systematically comparing the performance of various pile foundations in liquefied soil, focusing on buckling mechanisms and hinge formation. Using the Pyliq1 material model and zero-length elements in OpenSees, soil liquefaction around the piles was simulated, with numerical results validated against experimental centrifuge tests. The findings indicate that IABs supported by reinforced concrete piles with a 0.8 m diameter (RCC8) experience greater displacement at the abutment top, while alternative piles, such as 0.5 m (RCC5), HP piles with weak and strong axis (HPS and HPW), steel pipes (HSST) and concrete-filled steel tubes (CFST), show pronounced rotational displacement at the abutment bottom. Maximum stress, strain and bending moments occurred at the pile tops and at the interface between liquefied and non-liquefied soil. Notably, CFST piles resisted buckling under seismic excitation, suggesting their superiority for supporting IABs in liquefied soil.
This paper presents a discrete element method (DEM) investigation into the load transfer mechanisms and failure surfaces of geosynthetics reinforced soil (GRS) bridge abutments. A local strain-dependent reinforcement contact model is developed to accurately simulate the nonlinear tensile behavior of reinforcement. The study analyzes both the macroscopic deformation response and the microscopic fabric evolution of backfill soil under bridge load. The findings reveal that as the bridge load increases, the micro-bearing structure of the soil within the potential failure surface evolves through progressive loss of effective contacts, particle rotation, and fabric reorganization. These micromechanical phenomena underlie the development of shear bands and the global failure mechanism of GRS abutments. Furthermore, a parametric analysis is conducted to evaluate the effects of reinforcement stiffness, reinforcement vertical spacing, and backfill soil friction angle on failure surfaces of GRS abutments. The results demonstrate that higher reinforcement stiffness constrains failure surface development, while wider reinforcement spacing and lower soil friction angles lead to deeper and more pronounced failure surfaces. Overall, the study highlights the critical role of reinforcement-soil interactions and micromechanical processes in determining the deformation and failure surfaces of GRS bridge abutments.
Bridge abutments are often damaged by girder impacts during major earthquakes. Very limited studies have been conducted. None of the past studies have incorporated abutment damage as an integrated system, i.e. the interaction between the deck and the back wall as well as between abutment and backfill. First, the reliability of the numerical model for damage assessment is validated with the result obtained from the shaking table test. Second, numerical simulations of the impact effect were carried out on four abutments with different shapes and dimensions of wing wall. The developed numerical models can simulate the nonlinear backfill soil, the backfill-back wall interface, and damage to reinforced concrete with the strain rate effect of the concrete and steel reinforcement. Parametric studies were conducted on the influence of the nonlinearity of the backfill soil, back wall-to-backfill friction, constitutive law of concrete, hourglass ratio, and impact energy. The results show that the nonlinear behaviour of the backfill soil and wing wall plays a significant role in the impact force on the back wall behaviour. Since poundings can be repetitive, this study confirms that the velocity of the initial impact of a bridge deck can precisely predict the severity of abutment damage.
This study investigates the deformation characteristics of geosynthetic reinforced soil (GRS) bridge abutment models under cyclic loading conditions through experimental methods. The GRS abutment models were built using well-graded sand as backfill material and biaxial geogrid for reinforcement. Settlements of the footings, displacements of the facing, and strains in the reinforcements were monitored and analyzed. The findings show that cumulative settlements increase as the cyclic load amplitude rises. Furthermore, facing displacement tends to increase with height, reaching its maximum at the top. The cyclic loading amplitude affects the strains in the upper reinforcements more significantly than those in the lower reinforcements.
This paper investigates how accounting for contact conditions and a step abutment in the foundation affects the seismic damage behaviour of concrete gravity dams. For this purpose, a pushover analysis was conducted utilising two distinct calculation models based on continuum damage mechanics. The first model uses a continuous mesh between the dam and the soil foundation without modelling any discrete interfaces, while the second considers the dam and soil meshes separately with contact relations. To improve accuracy, the numerical simulations were conducted for each case with three different damage models. The results indicate how considering contact conditions has a significant impact not only on the overall seismic response but also on the distribution and progression of the damage field in the dam. More precisely, the areas where damage occurs in the vicinity of the foundation zones differ between these two models. The first model results indicate damage first appearing near the heel, while with the second model the damage begins near the abutment. This is demonstrated using the Beni-Haroun gravity dam as a structural case study.
Integral abutment bridges (IAB) have become increasingly popular in the past few decades due to their design simplicity. UK design rules limit the length of IABs to 60 m, due to the issues associated with thermal strains, settlement, and pressure build-up behind the abutment. A cyclic loading test, representing seasonal thermal fluctuations, was conducted on a 1/12 scaled-down retaining wall of a conventional full-height IAB. The test was then repeated with the inclusion of displacement compensation units (DCU) in the form of conical disc springs (CDS) and hollow rubber cylinders (HRC), which operate in a pre-deformed shape. The results show some remarkable improvements in the IAB performance with DCUs. The soil backfill pressure was reduced to 30% and 47% with CDSs and HRCs, respectively. Furthermore, no settlement was observed, as compared to the conventional IAB test which recorded a 20 mm settlement after 100 cycles. Non-linearity in the force-deflection behaviour of DCUs enables expansion and contraction of the deck to be accommodated with minimal fluctuation of backfill pressure. Finally, a finite element (FE) model of an HRC applied with two temperatures has been analysed and compared with the IAB wall test, which suggests that both analyses showed some correlation.
Integral abutment bridges (IABs) have been widely applied in bridge engineering because of their excellent seismic performance, long service life, and low maintenance cost. The superstructure and substructure of an IAB are integrally connected to reduce the possibility of collapse or girders falling during an earthquake. The soil behind the abutment can provide a damping effect to reduce the deformation of the structure under a seismic load. Girders have not been considered in some of the existing published experimental tests on integral abutment-reinforced-concrete (RC) pile (IAP)-soil systems, which may not accurately represent real conditions. A pseudo-static low-cycle test on a girder-integral abutment-RC pile (GIAP)-soil system was conducted for an IAB in China. The experiment's results for the GIAP specimen were compared with those of the IAP specimen, including the failure mode, hysteretic curve, energy dissipation capacity, skeleton curve, stiffness degradation, and displacement ductility. The test results indicate that the failure modes of both specimens were different. For the IAP specimen, the pile cracked at a displacement of +2 mm, while the abutment did not crack during the test. For the GIAP specimen, the pile cracked at a displacement of -8 mm, and the abutment cracked at a displacement of 50 mm. The failure mode of the specimen changed from severe damage to the pile top under a small displacement to damage to both the abutment and pile top under a large displacement. Compared with the IAP specimen, the initial stiffness under positive horizontal displacement (39.2%), residual force accumulation (22.6%), residual deformation (12.6%), range of the elastoplastic stage in the skeleton curve, and stiffness degradation of the GIAP specimen were smaller; however, the initial stiffness under negative horizontal displacement (112.6%), displacement ductility coefficient (67.2%), average equivalent viscous damping ratio (30.8%), yield load (20.4%), ultimate load (7.8%), and range of the elastic stage in the skeleton curve of the GIAP specimen were larger. In summary, the seismic performance of the GIAP-soil system was better than that of the IAP-soil system. Therefore, to accurately reflect the seismic performance of GIAP-soil systems in IABs, it is suggested to consider the influence of the girder.
This study conducted five centrifuge model tests to investigate the deformation characteristics of the Geosynthetics Reinforced Soil (GRS) abutments under vertical loads, considering the setback distance ab and beam seat width B as two major influencing factors. Test results show that a linear correlation existed between the maximum lateral facing displacements DL and the maximum settlements at the top of the GRS abutments Dv. The ab and the B had different effects on the deformation characteristics of the GRS abutments as well as the relationship between the DL and the Dv. The total volumetric strains of the GRS abutments were smaller than 0.3% for all the cases investigated in this study, indicating that it was reasonable to use the assumption of zero-volume change for the deformation calculation of the GRS abutments. This study proposed an improved semiempirical method to describe the relationship between the DL and the Dv. Centrifuge test results and data collected from the literature were used to validate the improved method. It was concluded that the improved method had the advantage of considering the effects of the ab and the B separately and therefore significantly improved the prediction accuracy of the deformations of the GRS abutments.
This study assesses the seismic fragility curves of in-service piled bridge abutments on liquefaction-prone soils and evaluates an optimal countermeasure within the vulnerability framework. Seismic fragility curves, accounting for varying ground motion intensities, assess the seismic risk and describe abutment damage through settlement measurements. The ageing abutment performance is estimated by integrating a corrosion model into fragility curves. The impact of different sheet pile positions on the seismic performance of in-service piled bridge abutments is analysed, and the optimal pile position is discussed. The developed fragility curves provide a rapid and effective risk assessment tool for the seismic performance of in-service abutments and guide liquefaction remedial measures.
Traffic-induced cyclic loading generates repetitive stresses and cumulative deformations on the GRS abutments, which affect the serviceability of GRS abutments. To evaluate the stress distribution of GRS abutments under cyclic traffic loading, this paper presents reduced-scale GRS abutment models constructed with sand backfill and geogrid reinforcements. The GRS abutment models were subjected to staged cyclic loading with different cyclic loading amplitudes to investigate the influences of cyclic loading amplitude, bridge superstructure load, and reinforcement vertical spacing on the dynamic soil stress distributions. The results indicate that the increase in residual stresses due to stress redistribution induced by cyclic loading is most pronounced at the top of the abutment, while there is little stress redistribution down to the foundation level. Increasing the static load of bridge superstructure or the amplitude of cyclic loading results in an increase in the incremental dynamic vertical soil stresses. Reinforcement vertical spacing does not significantly impact the incremental dynamic vertical soil stresses under cyclic loading, while the cyclic load has the most significant influence. Closer reinforcement vertical spacing could provide stronger lateral confinement, resulting in larger dynamic lateral soil stresses behind wall facing.