Production, isolation, optimization, and characterization of microbial PHA from Bacillus australimaris
["Ibrahim, Rafwana","Aranjani, Jesil Mathew","Prasanna, Navya","Biswas, Avirup","Gayam, Prasanna Kumar Reddy"]
2025-03-11
期刊论文
(1)
Population explosion in recent years has driven the environment to overuse nondegradable substances. Microbial polyesters known as polyhydroxyalkanoates (PHAs) are generated and retained as cytoplasmic granules in microorganisms with restricted nutritional availability and can be used to manufacture bioplastics. The current study attempts to screen soil isolates for PHA production and optimize their media parameters. Among all the isolates, 17 were identified and confirmed by Sudan black staining, as they are screening for PHA production and are identified by their colony characteristics. The isolation of the most promising strain, GS-14, was achieved through the sodium hypochlorite method, and subsequent quantification involved establishing a standard curve of crotonic acid. Notably, isolate GS-14 presented the highest yield, which was determined by extrapolating its data onto the standard curve. Characterization of the PHA polymer was subsequently performed, and the results were used to discern its properties. FTIR confirmed characteristic PHA absorption bands, with a prominent C = O stretching peak at 1732 cm(-)(1). LC-MS detected a molecular mass of 641.6 g/mol, indicative of an oligomeric species, while the actual polymer molecular weight is estimated between 5,000 and 20,000 Da. DSC revealed an exothermic peak at 174 degrees C, allowing the calculation of crystallinity, a key determinant of mechanical properties. Furthermore, the PHA-producing organism was identified as Bacillus australimaris through the sequencing of 16 S ribosomal RNA. The media optimization was performed via Minitab software, with statistical analyses employed to interpret the resulting data comprehensively.
来源平台:SCIENTIFIC REPORTS