Slope failures resulting from thaw slumps in permafrost regions, have developed widely under the influence of climate change and engineering activities. The shear strength at the interface between the active layer and permafrost (IBALP) at maximum thawing depth is a critical factor to evaluate stability of permafrost slopes. Traditional direct shear, triaxial shear, and large-scale in-situ shear experiments are unsuitable for measuring the shear strength parameter of the IBALP. Based on the characteristics of thaw slumps in permafrost regions, this study proposes a novel test method of self-weight direct shear instrument (SWDSI), and its principle, structure, measurement system and test steps are described in detail. The shear strength of the IBALP under maximum thaw depth conditions is measured using this method. The results show that under the condition that the permafrost layer is thick underground ice and the active layer consists of silty clay with 20% water content, the test results are in good agreement with the results of field large-scale direct shear tests and are in accordance with previous understandings and natural laws. The above analysis indicates that the method of the SWDSI has a reliable theoretical basis and reasonable experimental procedures, and meets the needs of stability assessment of thaw slumps in permafrost regions. The experimental data obtained provide important parameter support for the evaluation of related geological hazards.
Black carbon (BC) is a major short-lived climate pollutant (SLCP) with significant climate and environmentalhealth impacts. This review synthesizes critical advancements in the identification of emerging anthropogenic BC sources, updates to global warming potential (GWP) and global temperature potential (GTP) metrics, technical progress in characterization techniques, improvements in global-regional monitoring networks, emission inventory, and impact assessment methods. Notably, gas flaring, shipping, and urban waste burning have slowly emerged as dominant emission sources, especially in Asia, Eastern Europe, and Arctic regions. The updated GWP over 100 years for BC is estimated at 342 CO2-eq, compared to 658 CO2-eq in IPCC AR5. Recent CMIP6-based Earth System Models (ESMs) have improved attribution of BC's microphysics, identifying a 22 % increase in radiative forcing (RF) over hotspots like East Asia and Sub-Saharan Africa. Despite progress, challenges persist in monitoring network inter-comparability, emission inventory uncertainty, and underrepresentation of BC processes in ESMs. Future efforts could benefit from the integration of satellite data, artificial intelligence (AI)assisted methods, and harmonized protocols to improve BC assessment. Targeted mitigation strategies could avert up to four million premature deaths globally by 2030, albeit at a 17 % additional cost. These findings highlight BC's pivotal roles in near-term climate and sustainability policy.
Backfill mining is a lucrative method for extracting coal buried under buildings, and water bodies, which can substantially increase the resource usage efficiency by mitigating the strata movement and surface subsidence. Its effectiveness depends on the mechanical properties of granular backfill materials. A permeability test was performed on gangue and fly ash samples under different stress levels using an original seepage test system. The variation patterns of the broken rock's internal pressure and permeability were determined. The test results indicate the weakening of the seepage effect on granular materials and a gradual reduction of washed away fly ash. The permeability values fall into the range of 3.2 x 10(-15) similar to 3.2 x 10(-13)m(-2), and non-Darcy factor is between 3.2 x 10(10) and 3.2 x 10(12) m(-1). This phenomenon was more pronounced in samples with smaller particle sizes. As the axial stress increased, the backfill material showed a decline in permeability and an increase in the non-Darcy flow coefficient. As the content of fly ash increased, the mass loss grew sharply, which occurred mainly at the early seepage stage. The results are considered instrumental in the characterization of water and sand inrush.
The morphology of sheep wool applied as organic fertilizer biodegraded in the soil was examined. The investigations were conducted in natural conditions for unwashed waste wool, which was rejected during sorting and then chopped into short segments and wool pellets. Different types of wool were mixed with soil and buried in experimental plots. The wool samples were periodically taken and analyzed for one year using Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray Spectroscopy (EDS). During examinations, the changes in the fibers' morphology were observed. It was stated that cut wool and pellet are mechanically damaged, which significantly accelerates wool biodegradation and quickly destroys the whole fiber structure. On the contrary, for undamaged fibers biodegradation occurs slowly, layer by layer, in a predictable sequence. This finding has practical implications for the use of wool as an organic fertilizer, suggesting that the method of preparation can influence its biodegradation rate. (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(SEM)(sic)(sic)(sic)(sic)(sic)X(sic)(sic)(sic)(sic)(EDS)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).
Legumes are a vital component of agriculture, providing essential nutrients to both humans and soil through their ability to fix atmospheric nitrogen. However, the production of legume crops is often hindered by various biotic and abiotic stresses, limiting their yield and nutritional quality of crops by damaging plant tissues, which can result in lower protein content, reduced levels of essential vitamins and minerals, and compromised seed quality. This review discusses the recent advancements in technologies that are revolutionizing the field of legume crop improvement. Genetic engineering has played a pivotal role enhancing legume productivity. Through the introduction of genes encoding for enzymes involved in nitrogen fixation, leading to higher yields and reducing the reliance on synthetic fertilizers. Additionally, the incorporation of genes conferring disease and pest resistance has significantly reduced the need for chemical pesticides, making legume cultivation more sustainable and environmentally friendly. Genome editing technologies, such as CRISPR-Cas9, have opened new avenues for precision breeding in legumes. Marker-assisted selection and genomic selection are other powerful tools that have accelerated the breeding process. These techniques have significantly reduced time and resources required to develop new legume varieties. Finally, advancement technologies for legume crop improvement are aid and enhancing the sustainability, productivity, and nutritional quality of legume crops.
Bedrock-soil layer slopes (BSLSs) are widely distributed in nature. The existence of the interface between bedrock and soil layer (IBSL) affects the failure modes of the BSLSs, and the seismic action makes the failure modes more complex. In order to accurately evaluate the safety and its corresponding main failure modes of BSLSs under seismic action, a system reliability method combined with the upper bound limit analysis method and Monte Carlo simulation (MCS) is proposed. Four types of failure modes and their corresponding factors of safety (Fs) were calculated by MATLAB program coding and validated with case in existing literature. The results show that overburden layer soil's strength, the IBSL's strength and geometric characteristic, and seismic action have significant effects on BSLSs' system reliability, failure modes and failure ranges. In addition, as the cohesion of the inclination angle of the IBSL and the horizontal seismic action increase, the failure range of the BSLS gradually approaches the IBSL, which means that the damage range becomes larger. However, with the increase of overburden layer soil's friction angle, IBSL's depth and strength, and vertical seismic actions, the failure range gradually approaches the surface of the BSLS, which means that the failure range becomes smaller.
To address the engineering problems of road subsidence and subgrade instability in aeolian soil under traffic loads, the aeolian soil was improved with rubber particles and cement. Uniaxial compression tests and Digital speckle correlation method (DSCM) were conducted on rubber particles-cement improved soil (RP-CIS) with different mixing ratios using the WDW-100 universal testing machine. The microcrack and force chain evolution in samples were analysed using PFC2D. The results showed that: (1) The incorporation of rubber particles and cement enhanced the strength of the samples. When the rubber particles content was 1% and the cement content was 5%, the uniaxial compressive strength of the RP-CIS reached its maximum. Based on the experimental results, a power function model was established to predict the uniaxial compressive strength of RP-CIS; (2) The deformation of the samples remains stable during the compaction stage, with cracks gradually developing and penetrating, eventually entering the shear failure stage; (3) The crack and failure modes simulated by PFC2D are consistent with the DSCM test. The development of microcracks and the contact force between particles during the loading are described from a microscopic perspective. The research findings provide scientific support for subgrade soil improvement and disaster prevention in subgrade engineering.
Most gravel roads leading to rural areas in Ghana have soft spot sections as a result of weak lateritic subgrade layers. This study presents a laboratory investigation on a typical weak lateritic subgrade soil reinforced with non-woven fibers. The objective was to investigate the strength characteristic of the soil reinforced with non-woven fibers. The California Bearing Ratio and Unconfined Compressive Strength tests were conducted by placing the fibers in single layer and also in multiple layers. The results showed an improved strength of the soil from a CBR value of 7%. The CBR recorded maximum values of 30% and 21% for coconut and palm fibers inclusion at a placement depth of H/5 from the compacted surface. Multiple fiber layer application at depths of H/5 & 2 h/5 yielded CBR values of 38% and 31% for coconut and palm fibers respectively. The Giroud and Noiray design method and the Indian Road Congress design method recorded reduction in the thickness of pavement of 56% to 63% for coconut fiber inclusion and 45% to 55% for palm fiber inclusion. Two-way statistical analysis of variance (ANOVA) showed significant effect of depth of fiber placement and fiber type on the geotechnical characteristics considered. (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic),CBR(sic)(sic)7%(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)H/5(sic)(sic)(sic)(sic)(sic)(sic),CBR(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)30%(sic)21%. (sic)H/5(sic)2H/5(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)CBR(sic)(sic)(sic)(sic)38%(sic)31%. Giroud&Noiray(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)56%(sic)63%,(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)45%(sic)55%. (sic)(sic)(sic)(sic)(sic)(sic)(ANOVA)(sic)(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).
The reasonable value of good gradation characteristic parameters is key in designing and optimising soil-rock mixed high fill embankment materials. Firstly, the DJSZ-150 dynamic-static large-scale triaxial testing instrument was used for triaxial compression shear tests on compacted skeleton structure soil-rock mixture standard specimens. The changes in strength and deformation indicators under different gradation parameters and confining pressure were analysed. Then, based on the Janbu empirical formula, relationships between parameters K, n, and (sigma 1-sigma 3)ult and the coefficient of uniformity Cu and coefficient of curvature Cc were explored. Empirical fitting formulas for Duncan-Chang model constants a and b were proposed, establishing an improved Duncan-Chang model for soil-rock mixtures considering gradation characteristics and stress states. Finally, based on significant differences in particle spatial distribution caused by gradation changes, three generalised models of matrix-block stone motion from different particle aggregation forms were proposed. Results indicate the standard specimen's strength and deformation indicators exhibit significant gradation effects and stress-state correlations. The improved Duncan-Chang model effectively simulates the stress-strain relationship curve under different gradations and confining pressure, with its characteristics explainable based on the matrix block stone motion generalised model.