The anchor is commonly applied to enhance the seismic stability of a slope. Presently, the seismic permanent displacement of slope is widely estimated with a constant yield acceleration based on Newmark sliding block method, which is not a realistic scenario. Besides, the soil slope is mostly inhomogeneous and anisotropic, where a circular slip surface is not quite suitable for slope stability analysis. To overcome the shortcomings of estimation method of earthquake-induced displacement, a point-to-point strategy is applied to generate the instant discrete failure mechanism of inhomogeneous and anisotropic anchored slope to determine the time-dependent yield acceleration by limit analysis. The recursive formulas of slope and anchor parameters versus seismic displacement at tiny time interval are established to predict the dynamic behavior of slope. The seismic displacement at tiny time interval is estimated by Newmark sliding block method, and the total earthquakeinduced displacement is subsequently determined. The anchor axial force increases significantly during seismic excitation, which causes a time-dependent characteristic of yield acceleration. Moreover, the effect of inhomogeneity and anisotropy is investigated. The slope becomes more vulnerable to earthquake while the inhomogeneity of unit weight is considered. An increment in inhomogeneous factor or a decrement in anisotropic factor of friction angle or cohesion causes the stability of anchored slope to increase.
The permanent displacement of earth slopes during earthquake shaking is a key indicator for landslide hazard assessment. Previous studies mostly attempt to evaluate the earthquake-induced displacement of dry or saturated soil slopes, while it is less common to deal with partially saturated soils. In the present study, a simplified procedure is proposed to account for the seismic-induced excess pore pressure in slopes with partially saturated sandy soils. The effect of matric suction, suction stress, and excess pore pressure on the yield acceleration of partially saturated sandy slopes is investigated, and the coupled Newmark sliding block method, known as the flexible soil columns with dynamic shear modulus and damping ratio, is modified to estimate the seismic slope displacement. Detailed discussions are made about the effect of different degrees of saturation on the excess pore pressure ratio, yield acceleration, and slope displacement. The numerical results show that the excess pore pressure ratio tends to exponentially increase with saturation, and the change of yield acceleration and displacement with saturation can be divided into suction stress dominant and excess pore water pressure dominant stages.