This work studied biocomposites based on a blend of low-density polyethylene (LDPE) and the ethylene-vinyl acetate copolymer (EVA), filled with 30 wt.% of cellulosic components (microcrystalline cellulose or wood flour). The LDPE/EVA ratio varied from 0 to 100%. It was shown that the addition of EVA to LDPE increased the elasticity of biocomposites. The elongation at break for filled biocomposites increased from 9% to 317% for microcrystalline cellulose and from 9% to 120% for wood flour (with an increase in the EVA content in the matrix from 0 to 50%). The biodegradability of biocomposites was assessed both in laboratory conditions and in open landfill conditions. The EVA content in the matrix also affects the rate of the biodegradation of biocomposites, with an increase in the proportion of the copolymer in the polymer matrix corresponding to increased rates of biodegradation. Biodegradation was confirmed gravimetrically by weight loss, an X-ray diffraction analysis, and the change in color of the samples after exposition in soil media. The prepared biocomposites have a high potential for implementation due to the optimal combination of consumer properties.
The results of the study of plastic composites from degradable poly(3-hydroxybutyrate) P(3HB) and cellulose-containing natural materials of various origins are presented. For the first time, P(3HB) composites filled with bacterial nanocellulose (BNC) or wood (Pinus sibirica) flour (WF) were produced by melt pressing at 170 degrees C and 2000 Pa. The influence of the filler type and amount (30, 40, 50, 70 and 90 wt%) on the physicochemical and mechanical properties of the composites and their degradability in soil laboratory microcosms was revealed. The P(3HB)/WF composites compared with P(3HB)/BNC ones were thermally stable; their thermal degradation temperatures were 266 and 227 degrees C, respectively. Both composites had lower values of Young's modulus and fracture strength compared to P(3HB). As BNC content was increased, Young's modulus and fracture strength of the composites increased from 1831 to 14 MPa to 3049 and 19 MPa, in contrast to P(3HB)/WF, where the values decreased by a factor of 1.5-2.0. The half-life of composites with BNC and WF in soil was 180 and 220 days, respectively. Changes in the structure of the microbial community were determined as depending on the filler type; primary destructors among bacteria and fungi were isolated and identified. Environmentally friendly and completely degradable composites show promise as cellulose-plastic materials for practical application.