共检索到 2

The accurate quantification of the temporal changes in seabed strength allows for more reliable and less conservative geotechnical design. A recently developed effective stress framework, established within a one-dimensional computational domain to quantify changes in soil strength due to pore pressure generation and dissipation, has been extended to a twodimensional (2D) computational domain to allow for consideration of boundary value problems that are too complex to be simplified to one-dimensional conditions. The work to implement the 2D framework is reported across two companion papers. The first of the two papers utilises large deformation finite element analyses to quantify the spatial distribution of accumulated plastic shear strain. These distributions are encapsulated within a strain influence function that is used within the new 2D framework in this paper to calculate the extent and magnitude of excess pore pressure, and in turn the mobilised soil strength for a number of boundary value problems that represent typical offshore geotechnical processes. The merit of the new 2D framework is explored via retrospective simulations of existing experimental and numerical data. The resulting comparisons demonstrate the potential of the new framework, which is in quantifying the reliability of a range of geotechnical structures under complex loading conditions.

期刊论文 2024-09-01 DOI: 10.1139/cgj-2022-0332 ISSN: 0008-3674

The undrained shear strength of contractive fine-grained soils changes with time, reducing due to pore pressure generation and increasing during consolidation. There is an increasing appetite to recognise these temporal soil strength changes in offshore geotechnical design, as it provides a basis for potentially less conservative designs. Contributions to this endeavour are reported across two companion papers. This first paper extends an existing effective stress framework that relates the generation of pore pressure to accumulated plastic shear strain, allowing undrained shear strength to be calculated within the context of critical-state soil mechanics. The main development is the extension of the computational domain to two dimensions, allowing calculations to be made for boundary value problems that cannot be satisfactorily simplified to onedimensional conditions. The magnitude and distribution of accumulated shear strain surrounding objects buried in soil are quantified through a series of large deformation finite element analyses. These spatial distributions are described using a strain influence function in the new 2D framework to calculate the extent and magnitude of excess pore pressure, and in turn the mobilised soil strength around the buried object. The performance of the 2D framework is examined in the companion paper through retrospective simulations of experimental and numerical data.

期刊论文 2024-09-01 DOI: 10.1139/cgj-2022-0331 ISSN: 0008-3674
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页