共检索到 57

The wheat powdery mildew (WPM) is one of the most severe crop diseases worldwide, affecting wheat growth and causing yield losses. The WPM was a bottom-up disease that caused the loss of cell integrity, leaf wilting, and canopy structure damage with these symptoms altering the crop's functional traits (CFT) and canopy spectra. The unmanned aerial vehicle (UAV)-based hyperspectral analysis became a mainstream method for WPM detection. However, the CFT changes experienced by infected wheats, the relationship between CFT and canopy spectra, and their role in WPM detection remained unclear, which might blur the understanding for the WPM infection. Therefore, this study aimed to propose a new method that considered the role of CFT for detecting WPM and estimating disease severity. The UAV hyperspectral data used in this study were collected from the Plant Protection Institute's research demonstration base, Xinxiang city, China, covering a broad range of WPM severity (0-85 %) from 2022 to 2024. The potential of eight CFT [leaf structure parameter (N), leaf area index (LAI), chlorophyll a + b content (Cab), carotenoids (Car), Car/Cab, anthocyanins (Ant), canopy chlorophyll content (CCC) and average leaf angle (Deg)] obtained from a hybrid method combining a radiative transfer model and random forest (RF) and fifty-five narrow-band hyperspectral indices (NHI) was explored in WPM detection. Results indicated that N, Cab, Ant, Car, LAI, and CCC showed a decreasing trend with increasing disease severity, while Deg and Car/Cab exhibited the opposite pattern. There were marked differences between healthy samples and the two higher infection levels (moderate and severe infection) for Cab, Car, LAI, Deg, CCC, and Car/Cab. N and Ant only showed significant differences between the healthy samples and the highest infection level (severe infection). As Cab, Car, and Ant decreased, the spectral reflectance in the visible light region increased. The decrease in N and LAI was accompanied by a reduction in reflectance across the entire spectral range and the near-infrared area, which was exactly the opposite of Deg. The introduction of CFT greatly improved the accuracy of the WPM severity estimation model with R2 of 0.92. Features related to photosynthesis, pigment content, and canopy structure played a decisive role in estimating WPM severity. Also, results found that the feature importance showed a remarkable interchange as increasing disease levels. Using features that described canopy structure changes, such as optimized soil adjusted vegetation index, LAI, visible atmospherically resistant indices, and CCC, the mild infection stage of this disease was most easily distinguished from healthy samples. In contrast, most severe impacts of WPM were best characterized by features related to photosynthesis (e.g., photochemical reflectance index 515) and pigment content (e.g., normalized phaeophytinization index). This study help deepen the understanding of symptoms and spectral responses caused by WPM infection.

期刊论文 2025-07-01 DOI: 10.1016/j.jag.2025.104627 ISSN: 1569-8432

Zinc (Zn), an essential nutrient element, exhibits hormesis in plants-beneficial at low doses but toxic at high concentrations. To understand the molecular mechanisms underlying this hormetic response with low-dose stimulation and high-dose inhibition in wheat, we conducted transcriptomic analysis under different Zn treatments. Low Zn concentration (50 mu M) promoted plant growth by maintaining chlorophyll content, enhancing MAPK signaling, phytohormone signaling, glutathione metabolism, nitrogen metabolism, and cell wall polysaccharide biosynthesis. High Zn concentration (500 mu M) induced ultrastructural damage and suppressed photosynthesis, chlorophyll metabolism, and secondary metabolisms, while upregulating glutathione metabolism. Molecular docking revealed that hydrogen bonds between Zn and antioxidant enzymes facilitated reactive oxygen species scavenging. Notably, exogenous glutathione (GSH) application enhanced wheat tolerance to Zn stress by strengthening the antioxidant defense system and improving photosynthetic capacity. Our findings elucidate the underlying mechanisms of Zn hormesis in wheat and demonstrate the application potential of glutathione in mitigating Zn toxicity, providing strategies for managing Zn-contaminated soils.

期刊论文 2025-06-01 DOI: 10.1016/j.stress.2025.100820 ISSN: 2667-064X

This study investigates the potential of green-fabricated manganese dioxide (MnO2) nanoparticles (NPs) to mitigate chromium (Cr) toxicity in wheat, presenting a novel approach to enhancing ion homeostasis and physiological resilience under Cr stress. Chromium contamination in agricultural soils is a significant concern, severely impacting crop productivity and disrupting the physiological homeostasis of wheat. Chromium exposure compromises nutrient uptake, induces oxidative stress, and impairs plant growth and yield. This study explored the use of green-fabricated MnO2NPs to mitigate Cr-induced oxidative stress in two bread wheat cultivars, Borlaug-16 and SKD-1. Seed nano-priming with MnO2NPs (100, 250, and 500 mg kg-1) was applied, followed by Cr (100 mg kg-1) exposure, and key physiological, biochemical, and ionomic responses were evaluated. Manganese dioxide nanoparticles significantly reduced Cr uptake and improved ion transport. In Borlaug-16, NP250 enhanced seedling height by 74 %, while NP100 reduced H2O2and TBARS by 60.28 % and 50.17 %, respectively, indicating improved oxidative stress tolerance. SKD-1 exhibited greater Cr stress tolerance, with NP250 improving root length by 31.03 % and relative water content by 56.66 %, supporting better water retention. Additionally, MnO2NP treatments boosted antioxidant enzyme activities, increasing APX and GPX by up to 12.47 %, and restored root and leaf anatomy, reversing Cr-induced structural damage. Furthermore, MnO2NPs enhanced the uptake of essential nutrients such as calcium, potassium, and magnesium, while restricting Cr translocation, improving overall nutrient efficiency. These findings emphasize the potential of MnO2NPs as an eco-friendly strategy for enhancing crop resilience and promoting sustainable agriculture in Cr-contaminated soils.

期刊论文 2025-06-01 DOI: 10.1016/j.jtemb.2025.127661 ISSN: 0946-672X

Durum wheat cultivation is increasingly threatened by viral diseases worldwide. Soil-borne cereal mosaic virus (SBCMV) and wheat spindle streak mosaic virus (WSSMV) cause significant crop losses in Europe. These viruses are transmitted through a soil-inhabiting vector, the plasmodiophoromycota Polymyxa graminis Led. There are very few methods available to eradicate P. graminis, whose resting spores survive in infested soil for decades, but they are either too expensive or not environmentally friendly. Therefore, it is crucial to develop resistant wheat varieties to mitigate the damage. For this purpose, more than 200 durum wheat genotypes, mostly landraces, were selected from the Global Durum Wheat Panel germplasm collection. Then, an experiment was conducted in a semi-controlled environment: the genotypes were sown in pots containing soil infested by P. graminis carrying SBCMV and WSSMV and maintained through the winter period. In early spring, visual assessment of viral symptomatology was performed. Subsequently, the viral loads of the two viruses in leaf tissues were determined through qRT-PCR analysis. The tested genotypes exhibited different responses to the two viruses: SBCMV showed very diversified viral loads among genotypes, whereas WSSMV infected all genotypes. We identified 23 genotypes, with low viral loads of both viruses and reduced symptoms, that could be of particular interest for breeders aiming at new resistant durum wheat varieties. A pilot GWAS allowed to identify genomic regions putatively associated to resistance to SBCMV or WSSMV, as well as possible candidate genes involved in these traits.

期刊论文 2025-06-01 DOI: 10.1016/j.cpb.2025.100485

Cadmium (Cd) contamination in soil poses a significant environmental threat, reducing crop yields and compromising food safety. This study investigates the potential of selenium nanoparticles (Se-NPs) synthesized using wheat extract to mitigate Cd toxicity, reduce Cd uptake and mobility, and recover grain nutrient composition in wheat (Triticum aestivum L.). A pot experiment was conducted following a completely randomized design (CRD) with three replications. Treatments included control, four Se-NPs concentrations (10, 25, 50, and 100 ppm), four Cd stress levels (25, 50, 75, and 100 ppm), and their combined interactions. Various physiological, biochemical, and agronomic parameters were analyzed to assess the mitigation potential of Se-NPs against Cd toxicity in wheat. Se-NPs (36.77 nm) were characterized using FTIR, confirming functional groups for stabilization, XRD verifying crystallinity and size via the Scherrer Equation, SEM revealing spherical morphology, and EDX confirming selenium as the predominant element with minor trace elements. Under 50 ppm Cd stress, Se-NPs at 25 ppm reduced days to anthesis by 8.16 % and mitigated a 45.13 % decrease in plant height. Grain yield, which declined by 90.86 % under Cd stress, was restored by 90.86 % with 10 ppm Se-NPs. Additionally, Se-NPs improved thousand kernel weight by 32.71 %, counteracting a 25.92 % reduction due to Cd stress. Antioxidant enzyme activities, including SOD and CAT, increased by up to 333.79 % in roots with Se-NP treatment, while oxidative stress markers decreased by 28 %. Moreover, Se-NPs effectively mitigated Cd uptake and reduced its mobility within the plant. Grain protein content improved by 16.89 %, and carbohydrate levels were maintained at 4.61 % despite Cd exposure. These findings indicate that Se-NPs enhance crop resilience, supporting sustainable food production in Cd-contaminated environments.

期刊论文 2025-06-01 DOI: 10.1016/j.jtemb.2025.127644 ISSN: 0946-672X

Microbial-induced calcite precipitation (MICP) is an eco-friendly soil stabilization technology widely applied to the solidification of aeolian sand. To further enhance the effectiveness of MICP in cementing aeolian sand, this study introduced wheat straw powder (WSP) as a reinforcing material and conducted experimental research on WSP-enhanced microbial cemented aeolian sand. By combining macroscopic physical and mechanical tests with discrete element method (DEM) simulations, this study systematically investigated the mechanisms by which WSP enhances microbial cementation and the mesoscopic failure characteristics of the material. The results indicated that adding WSP significantly increased the calcium carbonate content, resulting in uniform calcite deposition and encapsulation of sand particles. This enhancement increased the compressive strength and deformation resistance of the cemented sand columns, with a notable increase in strain at failure. DEM simulations further revealed that as the calcium carbonate content increased, macroscopic cracks within the sand columns evolved from single to multiple pathways, eventually penetrating the entire sand column along the loading direction. The internal bonding failure process could be divided into compaction, expansion, and rapid growth stages. Additionally, the uniformity of particle bonding in WSP-reinforced sand columns significantly impacted their macroscopic mechanical behavior, with uneven interparticle bonding likely inducing microcrack accumulation, leading to severe fracture patterns. These findings provide valuable insights for optimizing microbial cementation techniques for aeolian sand.

期刊论文 2025-05-15 DOI: 10.1016/j.powtec.2025.120879 ISSN: 0032-5910

Long-term exposure to Cd through contaminated food can lead to multiple adverse health effects on humans. Although previous studies have covered global food Cd concentrations and dietary Cd exposures across different populations, there are increasing concerns regarding the adequacy of current food Cd safety standards to protect populations from adverse health effects. Moreover, incorporation of Cd relative bioavailability (Cd-RBA) in foods improves the accuracy of health risk assessment. However, factors influencing food Cd-RBA have not been systematically discussed, thereby hindering its application in risk assessment. This review aims to provide an overview of Cd contents in foods, discuss concerns regarding international food Cd concentration standards, explore factors influencing food Cd bioavailability, and highlight the opportunities and challenges in refining differences between dietary Cd intakes and body burdens. Our findings suggest that current safety standards may be insufficient to protect human health, as they primarily focus on kidney damage as the protective endpoint and fail to account for global and regional variations in food consumption patterns and temporal changes in dietary habits over time. Factors such as crop cultivars and food compositions greatly influence food Cd-RBA. To improve the accuracy of Cd health risk assessment, future studies should incorporate food Cd-RBA, sociodemographic characteristics, nutritional status, and incidental Cd exposure. This review highlights new insights into food Cd safety standards and Cd bioavailability, identifies critical knowledge gaps, and offers recommendations for refining health risk assessments. This information is essential to inform future bioavailability investigations, health risk assessment, and safety standard development.

期刊论文 2025-05-05 DOI: 10.1016/j.jhazmat.2025.137359 ISSN: 0304-3894

Grain protein content (GPC) often increases with nitrogen (N) fertilizer; however, low GPC is preferred for soft wheat (Triticum aestivum L.). The combined effects of decreasing N and increasing seed rate (SR) on soft wheat quality, economic benefits (Eb), apparent N recovery (ARN), and soil nitrate-N residual (SNR) are poorly understood. Field experiments were conducted with three SRs (SR135, SR180, and SR225) and two N levels (N235 and N290) in 2017-2018, and three N levels (N290, N235, and N180) with a control (N0) in 2018-19. The results showed that storage proteins, GMP, HMW-GS, and Zeleny sedimentation value significantly decreased with lower N levels and increased with higher SR. At the same SR, the significant difference for the parameters mentioned were greater at a low N rate than at a high rate. Furthermore, grain yield (GY), Eb, ARN, and SNR were significantly affected by N and SR. Increasing SR from 135 to 180 resulted in an average Eb increase of 13.32%, while increasing from 180 to 225 led to a decline of 3.75%. Compared to N290, N235 decreased SNR and GPC by 27.5% and 4.7%, respectively, but increased ARN by 18.3%. The highest Eb (13,914 CNY) and ARN value (57.5%) were observed with the treatment (N235SR180). Additionally, optimal combination for maximizing GY (90%), Eb (87.8%), and ARN (97%) was found at N235SR198, according to regression and spatial analysis. This study confirmed that optimizing N and SR can improve soft wheat quality and resource use efficiency without decreasing yield.

期刊论文 2025-05-01 DOI: 10.1016/j.jcs.2025.104151 ISSN: 0733-5210

Global demand for ecosystem services like food and clean water is increasing, and it is crucial to economically value these services for the purposes of environmental conservation, land-use planning, and the implementation of green taxes. Focusing on a monoculture wheat agroecosystem, the economic value of ecosystem services and environmental damage from different farm management types is here compared with natural ecosystems in a semi-arid region in Iran during the 2019-2020 agricultural year. Using field survey data collected from 203 wheat farms with varying management practices, we estimated the economic value of six ecosystem services, along with three environmental damages. The net value of provisioning/regulating services less environmental disservices in wheat agroecosystems was highest for farms with a conservation management system, followed (in rank order) by intensive, traditional, organic, and industrial management types. Wheat agroecosystems recorded net values of 41.94% to 66.92% below those of natural ecosystems in the region. The findings show that converting natural ecosystems into wheat agroecosystems increases the value of provisioning services (food and forage) but also substantially increases environmental costs. These costs rose linearly with the value of increases in provisioning services.

期刊论文 2025-04-15 DOI: 10.3390/land14040865

In this study, the mitigating effects of CaO NPs obtained from pomegranate extract via environmentally friendly green synthesis on CdCl2 stress in two varieties (Yolboyu and Kirac) of Turkish Kavilca wheat (Triticum dicoccum Schrank) under in vitro callus culture conditions were investigated. The calluses developed from embryos of both wheat varieties were exposed to either CaO NPs alone (1 and 2 mg/L), CdCl2 alone (1 or 10 mM) or the different combinations of these two compounds in MS medium for 4 weeks. Changes in the expressions of two genes (Traes_5BL_9A790E8CF and Traes_6BL_986D595B9) known to be involved in wheat's response to CdCl2 stress were analyzed by qRT-PCR. Additionally, certain physiological parameters, such as lipid peroxidation (LPO), H2O2, proline and soluble sugar content, and SEM-EDX analysis were used to assess the response of calluses to the applications. The CaO NPs treatments alone generally upregulated the expression of the 5BL and 6BL genes, while the CdCl2 applications decreased their expression in both cultivars. The CaO NPs reduced the proline content in both cultivars compared to the control. Co-treatment with CdCl2 and CaO NPs increased the sugar content and decreased the MDA content, but did not cause a significant change in the H2O2 content. SEM analysis showed that when CdCl2 and CaO NPs were applied to calluses together, the membranous and mucilaginous spherical structures were regained. The application of CaO NPs reduces the amount of cellular damage caused by CdCl2 stress and improves gene expressions.

期刊论文 2025-04-09 DOI: 10.3390/biology14040394
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 末页
  • 跳转
当前展示1-10条  共57条,6页