The prolonged exposure of agricultural soils to heavy metals from wastewater, particularly in areas near industrial facilities, poses a significant threat to the well-being of living organisms. The World Health Organization (WHO) has established standard permissible limits for heavy metals in agricultural soils to mitigate potential health hazards. Nevertheless, some agricultural fields continue to be irrigated with wastewater containing industrial effluents. This study aimed to assess the concentration of lead in soil samples collected from agricultural fields near industrial areas. Subsequently, we determined the lethal concentration (LC50) of lead (Pb) and other heavy metals for two Collembola species, namely Folsomia candida , a standard organism for soil ecotoxicity tests, and comparing it with Proisotoma minuta . The research further examined the toxic effects of lead exposure on these two species, revealing depletion in the energy reservoirs and alterations in the tissue histology of both organisms. The study revealed that lead can induce genotoxic damage as it evidently has moderate binding affinity with the ct-DNA and hence can cause DNA fragmentation and the formation of micronuclei. Elevated lipid peroxidation (LPO) levels and protein carbonylation levels were observed, alongside a reduction in antioxidant enzymes (CAT, SOD & GPx). These findings suggest that lead disrupts the balance between oxidants and the antioxidant enzyme system, impairing defense mechanisms and consequential derogatory damage within microarthropods. The investigation elucidates a complex network of various signaling pathways compromised as a result of lead toxicity. Hence, it presents a novel perspective that underscores the pressing necessity for implementing an integrated risk assessment framework at the investigated site.
Long-term wastewater irrigation leads to the loss of calcium carbonate (CaCO3) in the tillage layer of calcareous land, which irreversibly damages the soil's ability to retain cadmium (Cd). In this study, we selected calcareous agricultural soil irrigated with wastewater for over 50 years to examine the recalcification effects of sugar beet factory lime (SBFL) at doses of 0%, 2.5%, 5%, and 10%. We found that SBFL promoted Cd transformation in the soil from active exchangeable species to more stable carbonate-bonded and residual species, which the X-ray diffraction patterns also confirmed results that CdSO4 reduced while CdS and CaCdCO3 increased. Correspondingly, the soil bioavailable Cd concentration was significantly reduced by 65.6-84.7%. The Cd concentrations in maize roots and shoots were significantly reduced by 11.7-50.6% and 13.0-70.0%, respectively, thereby promoting maize growth. Nevertheless, SBFL also increased the proportion of plant-unavailable phosphorus (P) in Ca8-P and Ca10-P by 4.3-13.0% and 10.7-25.9%, respectively, reducing the plant-available P (Olsen P) content by 5.2-22.1%. Consequently, soil P-acquiring associated enzyme (alkaline phosphatase) activity and microbial (Proteobacteria, Bacteroidota, and Actinobacteria) community abundance significantly increased. Our findings showed that adding SBFL to wastewater-irrigated calcareous soil stabilized Cd, but exacerbated P limitation. Therefore, it is necessary to alleviate P limitations in the practice of recalcifying degraded calcareous land.
Here, the impact of irrigation using untreated wastewater (WW) on carrots (Daucus carota L.) was examined. We hypothesized that the addition of ethylenediaminetetraacetic acid (EDTA), dry algal powder (Spirulina platensis or Chlorella vulgaris), and Salix alba leaves powder would function as chelators for harmful contaminants in wastewater. The findings showed that irrigation of carrot plants with the sampled untreated wastewater led to significant decreases in the shoot lengths, fresh, dry weights of shoots and roots at stage I, the diameter of roots, pigment content, carotenoids, total soluble carbohydrate content, and soluble protein content. Furthermore, a significantly increased level of proline, total phenols, and the activities of polyphenol oxidase (PPO), peroxidase (POX), superoxide dismutase (SOD), and catalase (CAT) was identified in stage I samples. In contrast to the stage I, the length of the roots, the number of leaves on each plant, wet and dry weights of the stage II roots were all greatly enhanced. In spite of the increased yield due to the wastewater irrigation, carrot roots irrigated with wastewater had significantly more cadmium (Cd), nickel (Ni), cobalt (Co), and lead (Pb) than is considered safe. Our data clearly show that the application of Spirulina platensis, Chlorella vulgaris, EDTA, and leaves powder of salix was able to alleviate the toxicity of wastewater on carrot plants. For example, we recorded a significant decrease in the accumulation of carrot's Cd, Ni, Co, and Pb contents. We conclude that the treatments with Spirulina platensis and Chlorella vulgaris can be utilized as eco-friendly tools to lessen the damaging effects of wastewater irrigation on carrot plants.