In situ resource utilization of lunar regolith provides a cost-effective way to construct the lunar base. The melting and solidifying of lunar soil, especially under the vacuum environment on the Moon, are the fundamentals to achieve this. In this paper, lunar regolith simulant was melted and solidified at different temperatures under a vacuum, and the solidified samples' morphology, structure, and mechanical properties were studied. The results indicated that the density, compressive strength, and Vickers hardness of the solidified samples increased with increasing melting temperature. Notably, the sample solidified at 1400 degrees C showed excellent nanohardness and thermal conductivity originating from the denser atomic structure. It was also observed that the melt migrated upward along the container wall under the vacuum and formed a coating layer on the substrate caused by the Marangoni effect. The above results proved the feasibility of employing the solidified lunar regolith as a primary building material for lunar base construction.
A series of finite element analyses, conducted on the basis of modified triaxial tests incorporating radial drainage, were carried out to investigate the lateral deformation and stress state characteristics of prefabricated vertical drain (PVD) unit cells under vacuum preloading. The analyses revealed that the inward horizontal strain of the unit cell increases approximately linearly with the vacuum pressure (Pv) but decreases non-linearly with an increase in the initial vertical effective stress (sigma ' v0). The variations in the effective stress ratio, corresponding to the median excess pore water pressure during vacuum preloading of the PVD unit cell, were elucidated in relation to the Pv and sigma ' v0 using the simulation data. Relationships were established between the normalized horizontal strain and normalized effective stress ratio, as well as between the normalized stress ratio and a composite index parameter that quantitatively captures the effects of vacuum pressure, initial effective stress, and subsoil consolidation characteristics. These relationships facilitate the prediction of lateral deformation in PVD-improved grounds subjected to vacuum preloading, utilizing fundamental preloading conditions and soil properties. Finally, the proposed methodology was applied to analyze two field case histories, and its validity was confirmed by the close correspondence between the predicted and measured lateral deformation.
The lunar base establishing is crucial for the long-term deep space exploration. Given the high costs associated with Earth-Moon transportation, in-situ resource utilization (ISRU) has become the most viable approach for lunar construction. This study investigates the sintering behavior of BH-1 lunar regolith simulant (LRS) in a vacuum environment across various temperatures. The sintered samples were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM), along with nanoindentation, uniaxial compression, and thermal property tests to evaluate the microstructural, mechanical, and thermal properties. The results show that the sintering temperature significantly affects both the microstructure and mechanical strength of the samples. At a sintering temperature of 1100 degrees C, the compressive strength reached a maximum of 90 MPa. The mineral composition of the sintered samples remains largely unchanged at different sintering temperatures, with the primary differences observed in the XRD peak intensities of the phases. The plagioclase melting first and filling the intergranular pores as a molten liquid phase. The BH-1 LRS exhibited a low coefficient of thermal expansion (CTE) within the temperature range of - 150 degrees C to 150 degrees C, indicating its potential for resisting fatigue damage caused by temperature fluctuations. These findings provide technical support for the in-situ consolidation of lunar regolith and the construction of lunar bases using local resources.
As a relatively new method, vacuum preloading combined with prefabricated horizontal drains (PHDs) has increasingly been used for the improvement of dredged soil. However, the consolidation process of soil during vacuum preloading, in particular the deformation process of soil around PHDs, has not been fully understood. In this study, particle image velocimetry technology was used to capture the displacement field of dredged soil during vacuum preloading for the first time, to the best of our knowledge. Using the displacement data, strain paths in soil were established to enable a better understanding of the consolidation behavior of soil and the related pore water pressure changes. The effect of clogging on the deformation behavior and the growth of a clogging column around PHD were studied. Finite element analysis was also conducted to further evaluate the effects of the compression index (lambda) and permeability index (ck) on the soil deformation and clogging column. Empirical equations were proposed to characterize the clogging column and to estimate the consolidation time, serving as references for the analytical model that incorporates time-dependent variations in the clogging column for soil consolidation under vacuum preloading using PHDs.
The lateral cyclic bearing characteristics of pile foundations in coastal soft soil treated by vacuum preloading method (VPM) are not well understood. To investigate, static lateral cyclic loading tests were conducted to assess the impact of treatment durations and sealing conditions on pile performance. Results indicated that vacuum preloading significantly improved soil properties, with undrained shear strength (S-u) increasing by up to 36.5 times, especially in shallow layers. Longer treatment durations boosted the ultimate lateral bearing capacity by up to 125%, although the effect decreased with depth, suggesting an optimal duration. Sealing conditions had minimal impact on capacity but affected S-u distribution and pile behaviour. Analysis of p-y curves revealed that longer durations improved soil resistance in shallow layers, while shorter durations provided consistent resistance across depths. Sealed conditions enhanced displacement capacity. The API specification predicted soil resistance accurately for lateral displacements under 0.1D but showed errors for larger displacements. These findings emphasise the need for optimising VPM parameters to enhance pile-soil interaction and lateral cyclic performance. The study offers guidance for applying VPM in soft soil foundation engineering and balancing performance with cost efficiency.
A large-strain model was developed to study the consolidation behavior of soil deposits improved with prefabricated vertical drains and subjected to surcharge and vacuum preloading. The smear effect resulting from the installation of drains was incorporated in the model by taking the average values of permeability and compressibility in the smear zone. The dependence of permeability and compressibility on void ratio and the effects of non-Darcian flow at low hydraulic gradients were also incorporated in the model. The creep effect was also taken into account for secondary consolidation of soft soil deposits. The model was applied to two different embankments located at Suvarnabhumi International Airport, Thailand, and Leneghan, Australia. It was observed that the creep effect led to an additional settlement of 12%-17% after the primary consolidation phase. The study further demonstrated that creep settlements increased with the non-Darcian effect. The difference between surface settlement results with and without the creep effect increased from about 12% to 15% when the non-Darcian parameter (n) increased from 1 to 1.6. However, beyond a threshold value of n >= 1.6, the influence of non-Darcian flow on creep settlement diminished. The value of average and actual effective stresses increased by about 13% and 17%, respectively, when the value of n increased from 1 to 2. However, the impact of n on effective stresses became negligible for values of n >= 2.5. The rate of consolidation decreased approximately by about four times when the permeability ratio ((k) over tilde (u)/(k) over tilde (s)) increased from 1 to 5.
Here, we investigate how the oxidation state of Cr adsorbed to solid surfaces can change during XPS analysis. Experiments are performed to test how Fe(III) solid surfaces, aqueous chemistry, and XPS vacuum conditions affected the measured Cr oxidation state. While oxidized Cr(VI) adsorbs onto nonreducing solid surfaces in the experiments, reduced Cr(III) is primarily measured by XPS. The reduction of adsorbed Cr(VI) occurs under the vacuum conditions of the XPS as CO2, O-2, and H2O are removed from the sample surface. These results suggest that Fe(III) solid surfaces exposed to high-vacuum conditions and/or X-rays can cause the reduction of Cr or other elements with a high redox potential contained on that surface.
The construction of a lunar base requires a huge amount of material, which cannot be entirely transported from Earth. Therefore, technologies are needed to build with locally available resources, such as the lunar regolith. One approach is to directly melt the lunar regolith on the surface and under the vacuum condition of the Moon, using laser radiation. In this article, a lunar regolith simulant is laser beam melted to two-dimensional singlelayer-structures using different ambient pressures from 0.05 mbar to 2000 mbar, laser process parameters from 60 W to 100 W laser power, and 1 mm s- 1 to 3 mm s- 1 feed rates. Additionally, the influence of the ambient gas was investigated using argon as an air alternative. The results show that the ambient pressure on the Moon is not negligible when studying the melting processes of lunar regolith on Earth. With decreasing ambient pressure, the appearance of the melted regolith simulant varies from a shiny to a matt surface. At the highest laser energy density, the thickness of a single-layer increases from 2.6 +/- 0.4 mm to 5.3 +/- 0.3 mm and the porosity of the melted regolith increases from 17.2 % to 52.2 % with decreasing ambient pressure. Additionally, mechanical properties are determined using 3-point bending tests. The maximum bending strength decreases by 60 % with the increased ambient pressure from 10 mbar to 2000 mbar. Consequently, the development of in-situ resource utilization technologies, which process the lunar regolith directly on the lunar surface, must consider the ambient pressure on the Moon. Otherwise, the processes will not work as expected from the experiments in Earth-based laboratories.
The use of horizontal drains assisted by vacuum loading is an effective method for speeding up the consolidation of dredged soil slurry. However, few studies developed models for the large strain consolidation of clayey slurry with prefabricated horizontal drains (PHDs) under self-weight and vacuum loading considering the effects of nonlinear compression and creep. This study introduces a PHD-assisted finite strain consolidation model considering nonlinear compression and limited creep by incorporating an improved elasto-viscoplastic constitutive equation. Firstly, the governing equations for the consolidation of very soft soil with PHDs were derived and solved by the finite-difference method. Subsequently, the proposed consolidation model was verified by comparing the calculations with the finite element solutions, a laboratory model test, and a field trial performed in Hong Kong. Good agreement with the numerical solutions and measured results indicates that the proposed model can capture the consolidation features with PHD combining staged filling and time-dependent vacuum loading. Then, the proposed model was used to estimate a self-weight consolidation test and field test in Japan to show the performance of the proposed model. Finally, parametric studies were conducted to explore the influence of nonlinear compression and creep on the consolidation of soft soil with PHDs.
Addressing the current issues of poor resource utilization of waste fibers and ineffective vacuum preloading reinforcement for dredger fill, we developed a modified fiber plastic drainage plate based on the modification treatment of waste fibers. Using gradient ratio tests and indoor vacuum preloading model tests, we compared and analyzed the clogging characteristics of various modified fiber filter membranes, as well as the effects and patterns of vacuum preloading using different types of drainage plates on soft soils. The results show that the anti-clogging effect of the modified fiber filter membrane with a pore size of more than 119 mu m is better. The modified fiber drainage plate is superior to the ordinary split-type plastic drainage plate in terms of settlement, water output, vacuum degree, pore water pressure, soil moisture content, and vane shear strength. The drainage plate with a filter membrane pore size of 119 mu m exhibits the best reinforcement effect. Compared to the ordinary split-type plastic drainage plate, it has a lower cost, reduces moisture content by an average of 6.4%, and increases vane shear strength by an average of 7.8 kPa. This fully demonstrates that the modified fiber drainage plate not only provides excellent reinforcement in engineering applications but also reduces costs, aligning with the national goals for infrastructure construction and economic green sustainable development.