共检索到 2

Tufa, a loose and porous calcium carbonate deposit, is vulnerable to weathering, which can heighten the risk of geological hazards. This study investigated the potential of microbial-induced calcite precipitation (MICP) to stabilize weathered tufa by isolating urease-producing bacteria from Jiuzhaigou, Sichuan Province. Two strains with the highest urease activity, identified as Stenotrophomonas sp. (U1) and Lysinibacillus boronitolerans (U2), were selected for mixed cultures (Mc). The physiological characteristics and calcification capacity of the strains (U1, U2, and Mc), along with the mechanical properties of treated tufa columns (SCU-1, SCU-2, and SCM), were analyzed. The findings revealed that these strains effectively induced the formation of CaCO3. Mc demonstrated strong growth dynamics (OD600 = 3.9 +/- 0.1) and urease activity (865 +/- 17 U/ml), leading to enhanced CaCO3 production. Furthermore, MICP significantly improved the compressive and shear strength of the weathered tufa, with the SCM sample showing superior results compared to SCU-1 and SCU-2. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses confirmed that Mc produced a greater quantity of CaCO3 in the crystalline form of calcite. Overall, the results indicate that MICP represents a promising environmental protection technology that can effectively enhance the engineering properties of weathered tufa.

期刊论文 2025-06-01 DOI: 10.4491/eer.2024.396 ISSN: 1226-1025

The disposal of tailings in a safe and environmentally friendly manner has always been a challenging issue. The microbially induced carbonate precipitation (MICP) technique is used to stabilise tailings sands. MICP is an innovative soil stabilisation technology. However, its field application in tailings sands is limited due to the poor adaptability of non-native urease-producing bacteria (UPB) in different natural environments. In this study, the ultraviolet (UV) mutagenesis technology was used to improve the performance of indigenous UPB, sourced from a hot and humid area of China. Mechanical property tests and microscopic inspections were conducted to assess the feasibility and the effectiveness of the technology. The roles played by the UV-induced UPB in the processes of nucleation and crystal growth were revealed by scanning electron microscopy imaging. The impacts of elements contained in the tailings sands on the morphology of calcium carbonate crystals were studied with Raman spectroscopy and energy-dispersive X-ray spectroscopy. The precipitation pattern of calcium carbonate and the strength enhancement mechanism of bio-cemented tailings were analysed in detail. The stabilisation method of tailings sands described in this paper provides a new cost-effective approach to mitigating the environmental issues and safety risks associated with the storage of tailings.

期刊论文 2025-05-01 DOI: 10.1680/jenge.22.00075 ISSN: 2051-803X
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页