Geopolymers are recently recognized as superior sustainable alkali-activated materials (AAMs) for soil stabilization because of their strong bonding capabilities. However, the influence of freeze-thaw cycles (FTCs) on the performance of geopolymer-stabilized soils reinforced with fibers remains largely unexplored. In the current study, for the first time, the durability of polypropylene fiber (PPF) reinforced clayey soil stabilized with fly ash (FA) based geopolymer is investigated under FTCs, evaluating its performance during prolonged seasonal freezing. The effects of repeated FTCs (0, 1, 3, 6, and 12 cycles), different contents of alkali-activated FA (5 %, 10 %, and 15 %), varying PPF percentages (0 %, 0.4 %, 0.8 %, and 1.2 % with a length of 6 mm), and curing time (7 and 28 days) on the properties of stabilized samples have been determined through tests including standard Proctor compaction, unconfined compressive strength (UCS), mass loss, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR). The results revealed that a 0.4 % PPF concentration maximized strength in FA-based geopolymer samples by restricting crack propagation, irrespective of FA content, number of FTCs, or curing time. However, higher PPF contents lowered UCS values and Young's modulus due to fiber clustering and increased failure strain, respectively. Generally, an initial increase in UCS, Young's modulus, and resilience modulus (MR) of stabilized samples occurred with more FTCs because of their dense structure, delayed pore formation, and continued geopolymerization process and followed by a constant or decreasing trend in strength after 6 (or 3 in some cases) FTCs due to ice expansion in created air voids. Longer curing time resulted in denser samples with improved resistance to FTCs, especially under 12 FTCs. Moreover, samples with 10 % alkali-activated FA demonstrated the least susceptibility to FTCs. While initial FTCs caused no mass loss, subsequent cycles led to increased mass loss and remained below 2 % for all samples. Microstructural analysis results corroborated UCS test results. Although the primary chemical composition remained unchanged after 12 FTCs, these cycles induced morphological changes such as critical void formation and cracking within the gel structure. The stabilization approach proposed in this study demonstrated sustained UCS after 12 FTCs, promising reduced maintenance costs and extended service life in regions with prevalent freeze-thaw damage.
In cold regions, and considering the increasing concerns regarding climate change, it is crucial to assess soil stabilisation techniques under adverse environmental conditions. The study addresses the challenge of forecasting geotechnical properties of lime-stabilised clayey soils subjected to freeze-thaw conditions. A model is proposed to accurately predict the unconfined compressive strength (UCS) of lime-stabilised clayey soils exposed to freeze-thaw cycles. As the prediction of UCS is essential in construction engineering, the use of the model is a viable early-phase alternative to time-consuming laboratory testing procedures. This research aims to propose a robust predictive model using readily accessible soil parameters. A comprehensive statistical model for predicting UCS was developed and validated using data sourced from the scientific literature. An extensive parametric analysis was conducted to assess the predictive performance of the developed model. The findings underscore the capability of statistical models to predict UCS of stabilised soils demonstrating their valuable contribution to this area of study.
This study explores the mechanical properties and synergistic mechanisms of silty sand modified with guar gum (GG) and polypropylene fiber (PP fiber) through a series of unconfined compressive strength (UCS) tests, direct shear tests, and direct tensile tests. The test results reveal that the unconfined compressive strength (UCS) of silty sand can be dramatically improved by incorporating GG, boosting its strength by up to 23 times compared to the natural soil. Adding PP fiber further enhances the UCS and effectively mitigates brittle failure. GG dominates the increase in shear strength by enhancing cohesion, while the PP fiber optimises the shear stability by increasing the internal friction angle. The shear strength of the GG-PP fiber-enhanced soil can be boosted by 235% compared to natural soil. The synergistic effect of GG and PP fibers enables the tensile strength of the improved silty sand to reach 122.75 kPa, representing a 34.15% increase compared to soil with only GG incorporated. However, if the fiber content is too high (> 0.5%), the tensile strength will decrease due to increased porosity. The study found that GG enhances the cohesion between soil particles through hydrated gel, and the PP fiber inhibits crack propagation and improves ductility through the bridging effect. The two form a bonding-bridging synergistic system, which significantly optimises the mechanical properties of the soil. This combined improvement scheme has both high strength and high ductility and can replace traditional inorganic cementitious materials, providing new ideas and methods for the application of silty sand in roadbed engineering, slope reinforcement, and other fields.
This research investigates the use of waste stone dust, a crushing industries byproduct, in combination with cement to enhance the engineering properties of high-plasticity silt. The investigation focuses on evaluating improvements in soil consistency, compaction characteristics, microstructure, and long-term strength behavior. Results indicate that the addition of waste stone dust significantly improves plasticity and compaction characteristics, while the combination of cement and stone dust enhances shear strength more effectively than either material alone. The unconfined compressive strength of untreated soil, initially 57.3 kPa after one day of curing, increased up to 19.4 times after 90 days with 10 % cement addition, with further improvements observed when stone dust was incorporated. Moreover, non-linear regression analysis reveals that strength improvement follows a sigmoidal relationship with cement content and a logarithmic trend with curing time. Furthermore, insights from Consolidated Undrained Triaxial tests and Scanning Electron Microscopy provide further strengthen the stabilization mechanisms of the treated soil. The triaxial results show that adding 6 % cement in natural soil slightly increases the friction angle from 20 degrees to 22 degrees and increases the cohesion from 28 kPa to 60 kPa. However, further addition of 30 % stone dust and 6 % cement slightly improved friction angle and reduced the cohesion from 60 kPa to 26 kPa, which infers that cement primarily increased cohesion, whereas stone dust increases inter-granular friction. More importantly, this study offers a cost-effective solution to enhance behavior, addresses environmental concerns, and improve infrastructure resilience for high-plastic-silt-related problems.
The use of various sustainable materials and cement is a frequent and successful strategy for stabilizing problematic soil. The current research discusses the potential use of discarded millet husk ash (MHA) and cement (C) as subgrade ingredients to improve the geotechnical qualities of soil (S). MHA and cement are mixed in different proportions and the engineering characteristics of the stabilized soil are studied. The study involves examining fundamental properties, such as specific gravity and Atterberg's limits, as well as engineering properties, including Unconfined Compressive Strength (UCS) and California Bearing Ratio (CBR) tests. These evaluations are conducted to assess the feasibility of using the MHA-cement blend as a construction material. Additionally, FTIR & SEM analysis shows the addition of MHA-cement blend effectively couples with the soil. The test findings demonstrate that adding MHA to soil lead to decreased liquid limits and plasticity indices. The maximum dry density (MDD) was observed to decrease when MHA was mixed with soil. When 8% cement was incorporated to the S:MHA (84.5:7.5) combination, the UCS value rose even higher reaching 1600.1 kPa. The S:MHA:C arrangement in the ratio of 84.5:7.5:8 had the greatest California bearing ratio (CBR). Fourier transform infrared spectroscopy (FTIR) elucidated the various types of bond formations present within the soil composite and deeper peaks depicted greater presence of cementitious compounds after curing period. SEM analysis exhibited a greater density of N-A-S-H and C-A-S-H gels in comparison to natural soil samples. The findings suggest that the MHA-cement blend can effectively enhance the geotechnical properties of problematic soils, while addressing issues of agricultural waste management. This research contributes to several Sustainable Development Goals (SDGs), including SDG 9 (Industry, Innovation, and Infrastructure) by promoting innovative construction materials.
Complex adverse weather conditions such as rain erosion and frost are frequently encountered in practical construction projects, particularly in the Inner Mongolian region of China. In this study, a new biopolymer (GGPAM) with an interpenetrating crosslinked network structure was developed by chemically modifying GG to address the poor resistance of soil to rainwater erosion, frost, and other complex environmental conditions in open-air construction buildings. First, GG-PAM was synthesized by chemically modifying guar gum (GG) through graft copolymerization, and thermogravimetric (TG) analysis confirmed its favorable thermal stability. Subsequently, experiments were conducted to investigate the mechanical properties and microstructural characteristics of GG-PAM-solidified soil. Then, using GG as a control, dry-wet cycle and freeze-thaw cycling tests were performed to compare the changes in unconfined compressive strength (UCS) of GG- and GG-PAM-solidified soil. Finally, water erosion, crack propagation, and permeability tests were conducted to evaluate the resistance of GG-PAM-solidified soil to external forces. The results indicated that the mechanical strength, durability, and erosion resistance of the GG-PAM-solidified soil were significantly superior to those of GG. When the GG-PAM content reaches 1 %, both the mechanical strength and erosion resistance of the solidified soil are significantly improved. These findings provide a theoretical basis for the construction and maintenance of roadbeds.
The purpose of this study was to evaluate the sustainability benefits of Class F fly ash (FA), lime sludge (LS), and ground granulated blast furnace slag (GGBS)-based geopolymer-stabilized Edgar plastic kaolin (EPK) clay using the sustainability index (ISus) approach. Geotechnical engineering operations usually precede most infrastructural projects, making pavement construction an integral contributor to various environmental effects, due to the production of enormous quantities of greenhouse gas emissions through soil stabilization activities. To nip these concerns in the bud, effective integration of these environmental implications must be achieved during the geotechnical planning phase. The life cycle assessment (LCA) method was used to assess a wide range of environmental effects of a project, from raw material procurement, manufacturing, transportation, construction, and maintenance to final disposal. It is a well-recognized tool for designing environmentally sustainable projects. Experimental results from the geopolymer-stabilized EPK clay showed a notable improvement in unconfined compressive strength of the geopolymer-stabilized clay with 15% (FA + LS) and 5% (FA + GGBS) contents of up to 697% and 464%, respectively, after 28 days of curing at elevated temperature, 70 degrees C. The sustainability index (ISus) of geopolymer and lime treatment methods was analyzed based on the concept of environmental, resource consumption, and socioeconomic concerns, which quantifies the sustainability through greenhouse gas emission, environmental impacts, and the cost of utilizing FA, LS, and GGBS in soil stabilization compared with traditional lime. LCA was conducted for traditional lime treatment, FA-LS, and FA-GGBS geopolymer-stabilized subgrades to determine the most sustainable treatment method. From the sustainability analysis, using FA, LS, and GGBS as geopolymer stabilizers for kaolin clay reduced the global warming potential by 98.03% and 77.55% over the traditional lime stabilizers at 8% dosage. More importantly, results from the sustainability index (ISus) computations showed that FA-LS (ISus = 12.88) and FA-GGBS (ISus = 29.72) geopolymer treatment methods of EPK clay subgrade soils are more sustainable alternatives compared to the traditional lime (ISus = 48.07) treatment method.
This study aimed to address the challenges of solid waste utilization, cost reduction, and carbon reduction in the treatment of deep-dredged soil at Xuwei Port in Lianyungang city of China. Past research in this area was limited. Therefore, a curing agent made from powdered shells was used to solidify the dredged soil in situ. We employed laboratory orthogonal tests to investigate the physical and mechanical properties of the powdered shell-based curing agent. Data was collected by conducting experiments to assess the role of powdered shells in the curing process and to determine the optimal ratios of powdered shells to solidified soil for different purposes. The development of strength in solidified soil was studied in both seawater and pure water conditions. The study revealed that the strength of the solidified soil was influenced by the substitution rate of powdered shells and their interaction with cement. Higher cement content had a positive effect on strength. For high-strength solidified soil, the recommended ratio of wet soil: cement: lime: powdered shells were 100:16:4:4, while for low-strength solidified soil, the recommended ratio was 100:5.4:2.4:0.6. Seawater, under appropriate conditions, improved short-term strength by promoting the formation of expansive ettringite minerals that contributed to cementation and precipitation. These findings suggest that the combination of cement and powdered shells is synergistic, positively affecting the strength of solidified soil. The recommended ratios provide practical guidance for achieving desired strength levels while considering factors such as cost and carbon emissions. The role of seawater in enhancing short-term strength through crystal formation is noteworthy and can be advantageous for certain applications. In conclusion, this research demonstrates the potential of using a powdered shell-based curing agent for solidifying dredged soil in an environmentally friendly and cost-effective manner. The recommended ratios for different strength requirements offer valuable insights for practical applications in the field of soil treatment, contributing to sustainable and efficient solutions for soil management.
Microbially Induced Calcite Precipitation (MICP) is an eco-friendly method for improving sandy soils, relying on micro-organisms that require nitrogen and essential nutrients to induce carbonate mineral precipitation. Given the substantial annual generation of chicken manure (CM) and the associated challenges in its disposal resulting in environmental pollution, the nutrient-rich composted form of this waste material is proposed in this study as a supplementary additive (along with more costly industrial reagents, e.g., urea) to provide the necessary carbon and nitrogen for the MICP process. To this end, different CM contents (5 %, 10 %, and 15 %) along with various concentrations of cementation solution (1 M, 1.5 M, and 2 M) are employed in multiple improvement cycles to augment the efficiency of the MICP technique. Unconfined Compressive Strength (UCS), Ultrasonic Pulse Velocity (UPV), and Water Absorption (WA) tests are performed to assess the mechanical properties of the samples before and after exposure to freeze-thaw (F-T) cycles, while SEM, XRD, and FTIR analyses are carried out to delineate the formation of calcite within the porous structure of MICP-CM-treated sands. The findings suggest that an optimum percentage of CM (10 %) in the MICP process not only contributes to environmental conservation but also significantly enhances all the mechanical properties of bio-cemented sandy soils due to markedly improved bonding within their porous fabric. The results also show that although prolonged exposure to consecutive F-T cycles causes a reduction in strength and stiffness of enhanced MICP-treated soils, the mechanical properties of such geo-composites still remain within an acceptable range for optimal CM-enhanced biocemented mixtures, significantly superior to those of MICP-treated sands.
Deep soil mixing (DSM) is an established ground improvement technique employed in civil projects. Despite the superiority of field tests for understanding this technique, their high cost has directed researchers' focus on laboratory tests, resulting in limited attention given to operational factors. Consequently, in current research, a small-scale DSM setup was developed to investigate the influence of operational factors such as mixing time and execution procedure on strength and deformation characteristics of laboratory-scale DSM columns. For the installation of DSM columns, mixing times of 130, 190 and 250 seconds were used, together with normal and zigzag execution procedures, cement dosages (alpha) of 300, 400 and 500 kg/m(3), and total water-to-cement (W-total/C) ratios of 2.5, 3.0 and 3.5. Laboratory samples were also prepared using the same alpha values and (W-total/C) ratios for comparison with DSM columns. The sand bed was prepared with 5 % and 30 % moisture contents. Experimental observations showed that saturating the sand bed enhances the mixing quality by preventing slurry water infiltration into the soil surrounding the DSM columns. Results indicated that increasing mixing time and adopting zigzag execution procedure improved mixing quality, unconfined compressive strength (UCS), secant modulus (E-50), and strain at maximum stress (epsilon(Maximum Stress)), whilst reducing strength variability. Moreover, the outcomes showed that UCS and E-50 of samples have a direct and inverse relationship with alpha and (W-total/C), respectively, and that the nature of these relationships, not their magnitude, were not affected by mixing time and execution procedure. Additionally, findings indicated that the failure mode of DSM samples was influenced by operational factors, whereas (E-50/UCS) ratio was not.