The application of a new liquid soil material and the treatment effect of backfilling an underpass tunnel in an airport are studied. The deformation and mechanical properties of liquid soil and conventional soil under load are comprehensively compared and analyzed via a numerical simulation with finite element software. The effects of the buried depth of overlying fill, tunnel height, and traffic load on the backfilling of liquid soil abutment are analyzed. The research results show that under the action of load, the overall deformation and stress distribution of the liquid soil and conventional soil show similar laws. However, liquid soil backfilling has great advantages over conventional soil backfilling in all aspects. Liquid soil backfilling can reduce the deformation and the compressive stress at the corner of the backfilling area by approximately 13% and 15%, respectively. The overburden buried depth has a great impact on the subgrade deformation. In the actual construction, the overburden buried depth should be 1.5 m. The overburden depth has a greater impact on the vertical deformation of the road, and the self-weight of the overburden will act as an additional load on the overall roadbed, compared with conventional soil backfill. The overburden depth of 2.0 m conventional soil backfill is about equal to the overburden depth of 1.5 m liquid soil backfill. The use of liquid soil backfill is equivalent to the use of the overburden fill in reducing the additional load of 0.5 m. The height of the box culvert has a greater impact on the stress, but this change is not linear. The actual construction in the case of meeting the specific requirements of use should try to control in the vicinity of 8.4 m, and at the same time the use of liquid soil backfill can reduce the compressive stress of about 14%. The compressive stress increases first and then decreases with the increase in the liquid soil modulus. The liquid soil modulus should be controlled to 180 MPa. Moreover, liquid soil backfilling can reduce the compressive stress in the backfilling area by approximately 25%. The trapezoidal slope of the backfill area is proportional to the deformation amount. Although an obvious correlation with compressive stress exists, the regularity is not strong. Thus, the trapezoidal slope should be set to 1:1 during construction. Traffic load slightly affects the overall deformation and compressive stress of the road. However, the distribution trends of deformation and stress change obviously under the action of aircraft load. In the actual design, only one load form of aircraft load should be considered. (c) 2025 Tongji University and Tongji University Press. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Vacuum preloading and composite ground reinforcement are commonly used methods for reinforcing soft soil, but there is a lack of integrated design method for vacuum preloading combined with composite ground. This case study introduces an innovative approach that combines vacuum preloading with liquid bag pressurization to achieve the integrated design of consolidation drainage method and composite ground reinforcement, which is different from the reported air bag pressurization. To illustrate the effectiveness of this method. Model tests were carried out to analyze the variation of water discharge, pore water pressure, ground settlement, and average consolidation degree in the process of vacuum consolidation. The study investigated the water content, undrained shear strength, and ground bearing capacity of composite ground after ground treatment. A correlation between average undrained shear strength and characteristic value of ground-bearing capacity was established to evaluate and predict the treatment effect of composite ground. Research shows that compared with traditional vacuum preloading, the undrained shear strength can be increased by 13.78%-65.08%, and the characteristic value of bearing capacity for the composite ground can be enlarged by 2.3-4 times. These results indicate that the vacuum preloading combined with liquid bag pressurization can significantly improve reinforcement effect on soft ground.