共检索到 6

This study focused on synthesizing polyvinyl alcohol (PVA) utilizing glutaraldehyde (GA) as a crosslinking agent and silicon dioxide (SiO2) nanopowder with titanium dioxide (TiO2) nanopowder to reduce or prevent the hydrophilic property of PVA. Integrating SiO2 and TiO2 into the PVA boosted the hydrophobicity, thermal properties, and self-cleaning of the PVA film. The characteristic properties of PVA/GA, PVA/SiO2/GA, and PVA/SiO2/TiO2/GA nanocomposites polymer membranes were investigated by gel content, swelling capacity, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction patterns (XRD), scanning electron microscope (SEM), thermal gravimetric analysis (TGA), and contact angle. The resulting PVA/5%SiO2/1%TiO2/GA nanocomposite exhibits much better physical properties than PVA/GA hydrogel (water absorbency from 3.1 g/g to 0.07 g/g and contact angel from 0 degrees to 125 degrees). In addition, the nanocomposite retains very low swelling properties. These prepared nanocomposites are promising in a variety of applications such as sand soil stabilizers, construction, and building works where they exhibit excellent water resistance performance. This study introduces a novel approach for creating hydrophobic polymeric membranes from hydrophilic polymeric materials to stabilize sandy soil effectively.

期刊论文 2025-04-08 DOI: 10.3390/molecules30081664

This study investigates an environmentally friendly bioplastic made from cornstarch with fructose and different amounts of titanium dioxide (TiO2). The research focuses on its physical, chemical bonding, and nutritional properties. X-ray diffraction analysis indicates that TiO2 influences diffraction peaks, affecting the crystal size, with the smallest size of 12.54 nm observed in Sample (II) containing 0.1 g of TiO2. Fourier transform infrared analysis shows slight shifts in the stretching of the-OH groups, indicating consistent elemental composition. The mechanical properties of the bioplastic for Sample (I) lacking TiO2 exhibits the highest Young's modulus of 1.02593 MPa and a tensile strength of 0.1345 MPa. In terms of biodegradation, the cornstarch-based bioplastic decomposes by approximately 80 % in soil after 28 days, aided by moisture and soil microorganisms. Water resistance analysis of the cornstarch-based bioplastic indicates that the sample containing 0.1 g of TiO2 exhibits the highest percentage, with 66.66 % absorption after 120 s. Nutrient concentration analysis using mung bean plants shows increased levels of calcium, potassium, and iron in samples with TiO2, particularly in Sample (II) containing 0.1 g of TiO2, which has significantly higher nutrient content, namely 2.15 % calcium, 1.99 % potassium, and 424.46 ppm iron.

期刊论文 2024-12-01 DOI: 10.1016/j.ijbiomac.2024.137852 ISSN: 0141-8130

Titanium dioxide nanoparticles (TiO2 NPs) have been widely used in agriculture, which increased the risk to soilplant systems. Studies have demonstrated that TiO2 NPs can induce phytotoxicity. However, the toxicity mechanisms, particularly under the stress of TiO2 NPs with different crystalline forms, remain inadequately reported. In this study, we combined transcriptomics and metabolomics to analyze the toxicity mechanisms in rice (Oryza sativa L.) under the stress of anatase (AT) or rutile (RT) TiO2 NPs (50 mg/kg, 40 days). The length (decreased by 1.1-fold, p = 0.021) and malondialdehyde concentration (decreased by 1.4-fold, p = 0.0027) of rice shoots was significantly reduced after AT exposure, while no significant changes were observed following RT exposure. Antioxidant enzyme activities were significantly altered both in the AT and RT groups, indicating TiO2 NPs induced rice oxidative damage (with changes of 1.1 to 1.4-fold, p < 0.05). Additionally, compared to the control, AT exposure altered 3247 differentially expressed genes (DEGs) and 56 significantly differentially metabolites in rice (collectively involved in pyrimidine metabolism, TCA cycle, fatty acid metabolism, and amino acid metabolism). After RT exposure, 2814 DEGs and 55 significantly differentially metabolites were identified, which were collectively involved in fatty acid metabolism and amino acid metabolism. Our results indicated that AT exposure led to more pronounced changes in biological responses related to oxidative stress and had more negative effects on rice growth compared to RT exposure. These findings provide new insights into the phytotoxic mechanisms of TiO2 NPs with different crystalline forms. Based on the observed adverse effects, the study emphasizes that any form of TiO2 NPs should be used with caution in rice ecosystems. This study is the first to demonstrate that AT is more toxic than RT in paddy ecosystems, providing crucial insights into the differential impacts and toxic mechanisms of TiO2 NPs with different crystalline forms. These findings suggest prioritizing the use of RT when TiO2 NPs are necessary in agricultural development to minimize toxicity risks.

期刊论文 2024-10-01 DOI: 10.1016/j.impact.2024.100530 ISSN: 2452-0748

During the COVID-19 pandemic, an abundance of plastic face masks has been consumed and disposed of in the environment. In addition, substantial amounts of plastic mulch film have been used in intensive agriculture with low recovery. Butyl benzyl phthalate (BBP) and TiO2 nanomaterials (nTiO2) are widely applied in plastic products, leading to the inevitable release of BBP and nTiO2 into the soil system. However, the impact of coexposure of BBP and nTiO2 at low concentrations on earthworms remains understudied. In the present study, transcriptomics was applied to reveal the effects of individual BBP and nTiO2 exposures at a concentration of 1 mg kg -1, along with the combined exposure of BBP and nTiO2 (1 mg kg -1 BBP + 1 mg kg -1 nTiO2 (anatase)) on Metaphire guillelmi. The result showed that BBP and nTiO2 exposures have the potential to induce neurodegeneration through glutamate accumulation, tau protein, and oxidative stress in the endoplasmic reticulum and mitochondria, as well as metabolism dysfunction. The present study contributes to our understanding of the toxic mechanisms of emerging contaminants at environmentally relevant levels and prompts consideration of the management of BBP and nTiO2 within the soil ecosystems.

期刊论文 2024-03-01 DOI: 10.1016/j.jenvman.2024.120429 ISSN: 0301-4797

Air pollution is a major environmental and public health issue. Each year, large amounts of particulate matter (PM) and other harmful pollutants are released into the atmosphere. Conventional polymer nanofiber filters lack the functionality to capture ultrafine PM. As a sustainable alternative, this work developed titanium dioxide (TiO2) nanoparticle surface-modified cellulose nanofiber (CNF) aerogels for PM2.5 filtration. CNFs were extracted via mechanical disintegration to diameters below 100 nm. The nanofibers were functionalized with 1.0-2.5 wt% TiO2 nanoparticles using citric acid cross-linking. Cylindrical aerogels were fabricated by freezing and lyophilizing aqueous suspensions. Structural, morphological, thermal, and mechanical properties were characterized. TiO2 modification increased density (11.8-19.7 mg/cm3), specific surface area (287-370 m2/g), and Young's modulus (33.5-125.5 kPa) but decreased porosity (99.6 %-97.7 %), pore size (20.2-15.6 nm) and thermal stability compared to unmodified cellulose aerogels. At 2.5 wt% loading, the optimized aerogels achieved 100 % absorption of 0.1-5 mu m particulates owing to reduced pore size. Despite enhanced filtration capabilities, the modified CNF aerogels retained inherent biodegradability, degrading over 70 % within one month of soil burial. This pioneering research establishes TiO2 functionalized CNF aerogels as promising sustainable alternatives to traditional petroleum-based air filters, representing an innovative approach to creating next-generation nanofiltration materials capable of effectively capturing fine and ultrafine particulate matter pollutants.

期刊论文 2024-01-01 DOI: 10.1016/j.ijbiomac.2023.128204 ISSN: 0141-8130

This study aimed to improve the multifunctional properties (including photocatalysis, stability reusability, selfcleaning, antibacterial effects, and thermal radiation shielding) of cellulose fabrics through incorporation of TiO2 nanoparticles. To achieve this, anatase TiO2 nanoparticles were synthesized in situ and deposited onto cotton fabrics through hydrothermal method. The presence of TiO2 nanoparticles in cellulose fabrics greatly enhanced the photocatalytic efficiency and adsorption range and did not damage the fabric fibers. The TiO2-coated cotton exhibited an outstanding photocatalytic efficiency, with dye removal rates of 92.20 % +/- 0.015 % and 99.68 % +/- 0.002 % under UV-A and visible illumination, respectively. In addition, the material exhibited thermal radiation shielding properties, in which no heat absorption was observed within 60 min at 40 degrees C-70 degrees C. To further enhance the hydrophobicity, the TiO2-coated cotton was surface-modified with 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFDTS). The resulting PFDTS/TiO2-coated cotton was superhydrophobic with a water contact angle of 156.50 degrees +/- 0.05 degrees with a sliding angle of 4.33 degrees +/- 0.47 degrees and roughness of 67.35 nm. The superhydrophobicity of the PFDTS/TiO2-coated cotton also facilitated self-cleaning through water injection to remove soil impurities. Furthermore, the PFDTS/TiO2-coated cotton exerted antibacterial effects against gramnegative (Escherichia coli) and gram-positive (Staphylococcus aureus) bacteria under UV-A or visible illumination. These nanocomposite fabrics with multifunctional properties have potential for industrial, military, and medical applications.

期刊论文 2024-01-01 DOI: 10.1016/j.ijbiomac.2023.128321 ISSN: 0141-8130
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-6条  共6条,1页