Temperature effects become important in a number of geotechnical applications, such as nuclear waste disposal facilities, buried high-voltage cables, pavement, energy geostructures and geothermal energy. On the other hand, soft soils act time- and strain rate dependent. Both temperature and strain rate influence soil behavior, affecting stiffness, strength, and deformation even under constant stress levels. A model to predict temperature and loading rate effects on soil behavior is presented in this article. The model is based on a simple visco-hypooplastic model for clays and encompasses key aspects of coupled rate- and temperature-dependent soil behavior such as (partially irreversible) thermal expansion, heating-induced irreversible compression, stress history, drained heating/cooling cycles, as well as mechanical and thermal creep, incorporating isotachs, and isotherms.
Granular soils creep and age. Previous findings on the time-dependent phenomena under deviatoric stress are summarized and extended with the results of an experimental investigation. Multi-stage triaxial compression tests with creep phases at different deviatoric loading on medium-dense and dense samples of a uniformly graded silica sand confirm an increase in stiffness after creep phases. Contact maturing, contact homogenization, and stabilization of the soil structure are known causes for ageing reported in the literature. As other results found in the literature, the volumetric creep behavior can be dilatant, contractant or of negligible strain close to zero and depends on the trend of the volumetric strain resulting from deviatoric loading at the beginning of creep. By the triaxial tests it is shown that dilatant creep results in an increase of the radial strain due to grain rearrangements. The axial strain rates during creep and changes of the small-strain shear modulus (ageing) follow a power law with time. According to the experiments, the exponent of the proposed power law describing the development of strain and shear modulus at small strain during creep is independent of the density and stress state. The small-strain shear stiffness and the associated soil structure at the onset of creep determine the subsequent ageing behavior. A linear dependency was found between the related ageing rates and axial strain rates during creep, which can be used to predict ageing of granular materials in combination with rate-dependent constitutive models.
The long-term safety and durability of anchor systems are the focus of slope maintenance management and sustainable operation. This study presents the observed temperature, humidity, and anchor bolt stress at varying depths from four-year remote real-time monitoring of the selected loess highway cut-slope. The potential correlation between slope hydrothermal environment and anchor stress is analyzed. The anchor serviceability and durability were evaluated by establishing a time-dependent mathematical model of axial forces. The results show that the slope shallow loess exhibited hydro-thermal fluctuations annually during operation, subjecting the loess to continuous dry-wet cycles. Soil elastic deformation induces anchor axial force fluctuations due to hydro-thermo effects, while damage creep leads to the annual increase in axial force peaks and valleys. The increase in axial force is more significant at the upper slope and lower slope, thereby increasing the risk of retrogressive landslides in loess slopes. The time-dependent model of anchor axial force composing negative exponential and sine functions was proposed. The cyclic amplitudes, lower limits, and periods of temperature and humidity in slope can determine the model coefficients. The development patterns of axial force are classified into stable type, slow growth type, and accelerated growth type according to the characteristics of the model coefficients. Predicted results indicate that the anchor axial forces are lower than the landslide threshold within 30 years of slope operation, ensuring long safety and serviceability. Results provide a reference for the long-term safety evaluation and formulation of maintenance plans for loess slopes reinforced by anchor systems.
In tunneling technology, Earth Pressure Balance-Tunnel Boring Machine (EPB-TBM) technology operations require altering excavated soil rheology through soil conditioning, a vital aspect for optimal counterpressure control and soil extraction. This transformation is achieved by introducing additives like foam, and inherits its time-dependent behavior. Having observed a discrepancy in the stability of two foams generated with different flow rates, the core objective of research is exploring the influence of this parameter on time-dependency of mechanical properties of conditioned soil. This aspect is then studied also through a semi-quantitative analysis aimed to investigate correlations between the generation flow rates, the Foam Expansion Ratio, and used Foam Injection Ratio with the time-stability of conditioned soil properties.
An advanced constitutive framework for unsaturated soils, the UTUH model, is proposed in this paper, which considers the joint effect of time, suction and overconsolidation within the framework of sub-loading surface plasticity. A reference line, namely the instantaneously normal compression line (INCLs) for unsaturated soils, is introduced from a conceptual framework drawn from constant rates of strain test results to determine creep time and overconsolidation states of unsaturated soils. Subsequently, an isotropic elasto-viscoplastic constitutive model for unsaturated soils is produced by combining viscous deformation with mechanical and hydraulic deformation through overconsolidation parameter. Net stress, suction and time are adopted as fundamental constitutive variables and time-dependent loading collapse yield surface is derived to characterize the relationship between yield stress, suction, and time. Then, an extension to a triaxial stress state is built in the space of mean effective stress, suction, deviator stress and time variable. The hardening of yield surface and sub-loading surface is controlled by viscoplastic volumetric strain and unified hardening parameter. The performance of the proposed UTUH model is addressed through four numerical studies, and the proposed model is validated against experimental data from the literature.
This paper presents a novel elastic-viscoplastic constitutive model for reproducing the time-dependent behaviour of coarse-grained soil considering particle breakage, by integrating the Unified Hardening (UH) model, the elastic-viscoplastic (EVP) model and the overstress theory. The relationship between the degree of particle breakage and the loading rate is established, and the state variables associated with the critical state of coarsegrained soil are derived to jointly consider both time and particle breakage. A new three-dimensional elasticviscoplastic constitutive model is then constructed through combining the one-dimensional viscoplastic hardening parameter with a secondary consolidation coefficient considering particle breakage. The proposed model requires 19 parameters and it can well describe the influence of time-dependency and particle breakage to the shear, dilatancy, and compression behaviours of coarse-grained soil with various confining pressures or initial void ratios. Comparisons between the model predictions and experimental data are employed to validate the capability of the proposed model to replicate the time-dependent behaviour of coarse-grained soil.