共检索到 2

The stress state is the fundamental for evaluating the soil strength and stability, playing a crucial role. However, during the stress testing, local damage and other uncertain factors may lead to partial sensor data missing, causing the existing three-dimensional stress calculation method to fail. To accurately restore the soil stress state during data missing, a three-dimensional stress calculation method was developed based on three-dimensional stress testing principles, incorporating axisymmetric and one-dimensional compression characteristics. The three-dimensional stress, principal stress , the first invariant of stress I-1, the second in variant of stress J(2) and stress Lode angle of a sandy soil foundation under one-dimensional compression conditions with different data missing were calculated and compared to results with complete data. The results show that the method is highly accurate; as the load increases, the relative error decreases and converges. The principal stresses, the first invariant of stress I-1, the second invariant of stress J(2) and the stress Lode angle align with one-dimensional compression response, suggesting that this calculation method supports advanced data mining. This study offers a novel approach and a practical method for fully utilizing the test data.

期刊论文 2025-05-01 DOI: 10.16285/j.rsm.2024.1443 ISSN: 1000-7598

Due to its distinct characteristics of instantaneity and abruptness, the stress variation characteristics of unsaturated soil under impact loads significantly differ from those under static and conventional dynamic loads. To investigate the spatial stress state under impact loads, in-situ testing was conducted on an unsaturated soil roadbed using three-dimensional stress testing technology. The three-dimensional soil pressure cells were set at depths of 0.3 m and 0.6 m below the ground surface. Continuous vertical impact loads were applied at the ground projection of the buried points. Stress testing data was collected in real time, and stress transformation methods were applied to obtain the corresponding three-dimensional stress, principal stresses, and the evolution of principal directions. Based on this, a comparison was made with existing one-dimensional stress testing methods and results, further illustrating the rationality and scientific validity of three-dimensional stress testing. The testing data revealed that under impact loads, the stress component in the impact direction (i.e., the z-axis direction) shows a notable instantaneous increase with a positive increment, whereas the increment of positive stress in the y-direction is negative. The principal stress direction angles alpha, beta, and gamma undergo considerable deviations during the impact. Specifically, alpha varies within a 90 degrees range, while beta and gamma rapidly decrease from their initial values to their supplements. Moreover, all three directional angles experience multiple reciprocating changes within a single impact duration. This research has theoretical significance in deepening the understanding of stress response and evolution processes in unsaturated soils under impact loads, providing valuable references for constitutive models, engineering design, and construction research related to seismic or other impact loadings.

期刊论文 2024-08-01 DOI: 10.16285/j.rsm.2023.1135 ISSN: 1000-7598
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页