共检索到 6

In order to address the issue of surface deformation in wintering foundation pits in seasonal frozen soil areas due to excavation and freeze-thaw, an indoor scale model test was conducted to examine the displacement relationship between pit wall soil and supporting structures under freeze-thaw conditions, as well as the temperature change and water migration of soil surrounding the foundation pit. The distribution mode of surface settlement under excavation and freeze-thaw conditions was examined and a surface settlement calculation model was established based on the maximum value of surface settlement. The water will move from the frozen to the unfrozen region as a result of the freeze-thaw cycle. About 1.1 m is the freezing depth. An increase in surface settlement will result from the coordination of deformation between the soil and the supporting structure during freezing and thawing. The greatest surface settlement value following the initial freeze-thaw cycle is 1.082 mm, which is around 215% greater than that of excavation. The skewed distribution is comparable to the surface settlement curves produced by excavation and freeze-thaw cycles. The calculated model's results and the measured settlement values agree rather well.

期刊论文 2025-03-28 DOI: 10.3390/buildings15071104

The soil moisture active passive (SMAP) satellite mission distributes a product of CO2 flux estimates (SPL4CMDL) derived from a terrestrial carbon flux model, in which SMAP brightness temperatures are assimilated to update soil moisture (SM) and constrain the carbon cyclemodeling. While the SPL4CMDL product has demonstrated promising performance across the continental USA and Australia, a detailed assessment over the arctic and subarctic zones (ASZ) is still missing. In this study, SPL4CMDL net ecosystem exchange (NEE), gross primary production (GPP), and ecosystem respiration (R-E) are evaluated against measurements from 37 eddy covariance towers deployed over the ASZ, spanning from 2015 to 2022. The assessment indicates that the NEE unbiased root-mean-square error falls within the targeted accuracy of 1.6 gC.m(-2).d(-1), as defined for the SPL4CMDL product. However, modeled GPP and R-E are overestimated at the beginning of the growing season over evergreen needleleaf forests and shrublands, while being underestimated over grasslands. Discrepancies are also found in the annual net CO2 budgets. SM appears to have a minimal influence on the GPP and R-E modeling, suggesting that ASZ vegetation is rarely subjected to hydric stress, which contradicts some recent studies. These results highlight the need for further carbon cycle process understanding and model refinements to improve the SPL4CMDL CO2 flux estimatesover the ASZ.

期刊论文 2025-01-01 DOI: 10.1109/JSTARS.2025.3555850 ISSN: 1939-1404

The vertical temperature distribution in the permanently shaded region (PSR) has a significant impact on the temporal and spatial distribution of the cold trap. To obtain the vertical temperature profile of the PSR, an inversion method that fuses microwave and infrared brightness temperature (TB) data is proposed. In the inversion process, the infrared data were initially used to derive the optimal value of the H-parameter that controls the density profile. Subsequently, high-frequency (37 and 19.35 GHz) microwave TB data were used to ascertain the range of surface density, whereas low-frequency (3 GHz) microwave TB data were used to determine the range of bottom density. A fixed correction was applied to the 3-GHz brightness temperature data to account for the calibration error. Due to the inherent uncertainties associated with the thermal model, both the Hayne and Woods' models were used in the inversion process, yielding disparate results. The PSR in the Haworth impact crater was selected as a case study for the inversion. The Woods' model was found to provide a superior explanation for the microwave observation. The optimal surface density of the PSR of the Haworth crater was determined to be within the range of 1200-1300 kg m(-3), while the bottom density was within the range of 2100-2200 kg m(-3). The inverted vertical temperature distribution in the PSR of Haworth crater indicates that the depth of the cold trap can reach approximately 8.5 m. In addition, the impact of heat flow on microwave TB is discussed.

期刊论文 2025-01-01 DOI: 10.1109/TGRS.2024.3524792 ISSN: 0196-2892

In China's Chang'e 7 mission, a miniflyer will be carried for in-situ water ice measurement in permanently shadowed regions (PSRs) around the lunar south pole. The extreme cold environment within PSRs causes serious challenges for the safety of the miniflyer. Predication of temperatures in PSR is critical for designing the internal heating system and the heat source capacity. Conducting in-situ detection mission in relatively warm temperature can reduce the threat of the cold environment and save energy to maintain a suitable operation temperature for payloads. Since the polar-orbiting satellite lunar reconnaissance orbiter passes over the same location in the polar region with intervals of about a month, the temporally continuous observation is unavailable. Simulation is necessary to determine the temporally continuous temperatures of PSR during the mission. In this article, a numerical model of the temperatures in PSR is presented. The ray tracing approach is used to calculate the shadowing effect of terrain on scattered sunlight and thermal radiation. The PSR temperatures are simulated with the one-dimensional heat conduction equation. Simulated temperatures are compared with Diviner data for validation. The spatial and temporal temperature distributions of PSRs in crater Shackleton, which is the preferred landing site for the Chang'e 7 mission, are simulated from 2026 to 2028. The simulated temperature in high temporal resolution of one Earth hour can be applied to analyzing diurnal and seasonal temperatures in PSRs and is helpful for thermal management and design of the internal heating system. The time windows with relatively warm temperature in PSR at regions with slope angles less than 5(degrees) are recommended to save energy and reduce the hazards of the extremely cold environment.

期刊论文 2024-01-01 DOI: 10.1109/JSTARS.2024.3374968 ISSN: 1939-1404

Near-surface temperatures of permanently shadowed regions (PSRs) on the Moon provide fundamental information for water ice exploration. Seasonal temperature variations of PSRs are found in both Chang'E-2 microwave radiometer data and Diviner Lunar radiometer observations. Furthermore, unusual microwave brightness temperature variations between February 2011 and May 2011 of double-shaded PSRs are shown in the Chang'E-2 observational data, i.e., that the minimum microwave brightness temperature occurs before the time when the infrared brightness temperature reaches the minimum in double-shaded PSRs. To interpret this phenomenon, the 1-D thermal model and the microwave radiation transfer model are used. In the thermal model, the reradiation energy from the illuminated area is estimated by effective solar irradiance, which is an analytic solution for the radiative equilibrium temperature in the shadowed area of a spherical bowl-shaped crater. In the simulation, an assumed internal 0.4 W/m(2) heat flow beneath the lunar surface made a plausible fit to the unusual variations during some lunations. However, this is a huge value compared with the well-known heat flow value of about 0.018 W/m(2). Furthermore, it is difficult to obtain this extra heat energy by lateral conduction below the surface in a large impact crater due to the small thermal conductivity of the lunar regolith. Finally, the unusual microwave brightness temperature (TB) changes are concluded to be caused by a calibration problem after excluding other possible reasons. In addition, a statistical correction method is applied to revise the problematic TB data to obtain the proper variation trend of the brightness temperature.

期刊论文 2022-01-01 DOI: 10.1109/TGRS.2022.3165822 ISSN: 0196-2892

The permanent shaded regions (PSRs) at the lunar poles receive no direct solar illumination throughout the year, so their temperatures are extremely low. The PSR is mainly heated by the radiation heat flow and the scattered solar radiation from the sunlit crater wall. The temperature distribution in the PSR and its diurnal and seasonal variations have been calculated using the ray-tracing method, which determines the radiation heat flow and the scattered solar radiation. In this article, the radiation heat flows were calculated by anisotropic emissivity of the PSR, and the scattered solar radiation was calculated using the lunar Lambert model. To conform to the Diviner IR temperature data, the 1-D heat conduction equation was solved with modified heat conductivity (an important parameter of the regolith media). As an example, the daytime and nighttime temperatures in the Hermite-A crater at the North Pole during summer and winter were numerically simulated and were compared with the Diviner IR data. In addition, rocks near the central peak of the crater in the PSR may enhance the nighttime temperature. This was validated by the PSR images captured by the Lunar Reconnaissance Orbiter Camera (LROC), the Miniature Radio Frequency instrument data on the LRO, and the numerical simulations.

期刊论文 2021-04-01 DOI: 10.1109/TGRS.2020.3009117 ISSN: 0196-2892
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-6条  共6条,1页