The escalating environmental challenges posed by waste rubber tyres (WRTs) necessitate innovative solutions to address their detrimental effects on the geoenvironment. Thus, the knowledge about the recent advancements in material recovery from WRTs, emphasising their utilisation within the framework of the United Nations Sustainable Development Goals (SDGs) and the circular economy principles, is the need of the hour. Keeping this in mind, various techniques generally used for material recovery, viz., ambient, cryogenic, waterjet, and so on, which unveil innovative approaches to reclaiming valuable resources (viz., recycled rubber, textiles, steel wires, etc.) from WRTs and various devulcanisation techniques (viz., physical, chemical, and microbial) are elaborated in this paper. In parallel, the paper explores the utilisation of the WRTs and recovered materials, highlighting their application in geotechnical and geoenvironmental engineering development projects while addressing the necessary environmental precautions and associated environmental risks/concerns. This paper incorporates circular economy principles into WRTs utilisation and focuses on achieving SDGs by promoting resource efficiency and minimising their environmental impact.
Engineered nanomaterials (ENMs) have aroused extensive interest in agricultural, industrial, and medical applications. The integration of ENMs into the agricultural systems aligns with the principles of United Nations' sustainable development goals (SDGs), circular economy (CE) and bio-economy (BE) principles. This approach offers excellent opportunities to enhance productivity and address global climate change challenges. The revelation of the adverse effects of nanomaterials (NMs) on various organisms and ecosystems, however, has fueled the debate on 'Nano-paradox' leading to emergence of a new research domain 'Nanotoxicology'. ENMs have shown different interactions with biological and environmental systems as compared to their bulk counterparts. They bioaccumulate in organisms, soils, and other environmental matrices, move through food chains and reach higher trophic levels including humans ultimately resulting in oxidative stress and cellular damage. Understanding nano-bio interactions, the mechanism of gene- and cytotoxicity, and associated potential hazards, is therefore, essential to mitigate their toxicological outputs. This review comprehensively examines the cyto- and genotoxicity mechanisms of ENMs in biological systems, covering aspects such as their entry, uptake, cellular responses, dynamic interactions in biological environments their long-term effects and environmental risk assessment (ERA). It also discusses toxicological assessment methods, regulatory policies, strategies for toxicity management/mitigation and future research directions in nanotechnology, all within the context of SDGs, CE, promoting resource efficiency and sustainability. Navigating the nano-paradox involves balancing the benefits of nanomaterials with concerns about nanotoxicity. Prioritizing thorough research on above facets can ensure sustainability and safety, enabling responsible harnessing of nanotechnology's transformative potential in various applications including mitigating global climate change and enhancing agricultural productivity.
Climate change and land degradation (LD) are some of the most critical challenges for humanity. Land degradation (LD) is the focus of the United Nations (UN) Convention to Combat Desertification (UNCCD) and the UN Sustainable Development Goal (SDG 15: Life on Land). Land degradation is composed of inherent and anthropogenic LD, which are both impacted by inherent soil quality (SQ) and climate. Conventional LD analysis does not take into account inherent SQ because it is not the result of land use/land cover change (LULC), which can be tracked using remote sensing platforms. Furthermore, traditional LD analysis does not link anthropogenic LD to climate change through greenhouse gas (GHG) emissions. This study uses one of the indicators for LD for SDG 15 (15.3.1: Proportion of land that is degraded over the total land area) to demonstrate how to account for inherent SQ in anthropogenic LD with corresponding GHG emissions over time using the state of Arizona (AZ) as a case study. The inherent SQ of AZ is skewed towards low-SQ soils (Entisols: 29.3%, Aridisols: 49.4%), which, when combined with climate, define the inherent LD status. Currently, 8.6% of land in AZ has experienced anthropogenic LD primarily because of developments (urbanization) (42.8%) and agriculture (32.2%). All six soil orders have experienced varying degrees of anthropogenic LD. All land developments in AZ can be linked to damages from LD, with 4862.6 km2 developed, resulting in midpoint losses of 8.7 x 1010 kg of total soil carbon (TSC) and a midpoint social cost of carbon dioxide emissions (SC-CO2) of $14.7B (where B = billion = 109, USD). Arizona was not land degradation neutral (LDN) based on an increase (+9.6%) in the anthropogenic LD overall and an increase in developments (+29.5%) between 2001 and 2021. Considering ongoing climate change impacts in AZ, this increase in urbanization represents reverse climate change adaptation (RCCA) because of the increased population. The state of AZ has 82.0% of the total state area for nature-based solutions (NBS). However, this area is dominated by soils with inherently low SQ (e.g., Entisols, Aridisols, etc.), which complicates efforts for climate change adaptation.
It is known that natural products can be used to strengthen and minimise stress of the gardening and sportive lawns, thus reducing the required inputs. In this paper, a trial is designed that allows for the study of the effect of a combination of two biostimulants and water -retaining agent products on different types of lawns. During 6 months, including the summer, soil and plant parameters are evaluated to compare the effects of treatments on soil temperature, humidity, and electrical conductivity, along with the NDVI of the grasslands. Treatment with the water -retaining agent and the second tested biostimulants has increased soil moisture by 10 %, with a greater effect on ornamental grasslands with lower maintenance requirements than sports lawns. The treatments with the two biostimulants without the water retaining agent do not lead to a significant variation in the aspect of the lawn. Marginal increases in the NDVI have been observed in all the treatments, which include the biostimulants. According to these results, it is possible to achieve better water efficiency in managing urban lawns by using natural products, which leads to a more sustainable use of hydric resources.
Sustainable agriculture for food security, food safety and food nutrient values within the existing operational land area are three major challenges in the current agriculture research and development. The levels of nutrient losses, pesticides, moisture content, climate change and plant protection aggregates need to be detected at appropriate time to prevent food damage and sustain food security. There is a need for sensors having low detection limits with high selectivity towards the target species present in soil, plants, food, preservatives and storage vessels under ambient conditions. Nanoregime offer ambit a viable tool to promulgate them easily in plant tissues, micro-sized thermocouples and soil moisture probes. Nanoparticles and nanocomposites based materials formulate an interesting branch on account of their unique electrical, optical and spectroscopic properties. The present review aims to integrate the role of nanotechnology in current agriculture sector and amendments required to increase the sensitivity and selectivity of the sensors.
The United Nations (UN) Land Degradation Neutrality (LDN) evaluation stresses the need to account for different types of land degradation (LD) as part of the UN Sustainable Development Goal (SDG 15: Life on Land) and UN Convention to Combat Desertification (UNCCD). For example, one of the indicators, 15.3.1 Proportion of land that is degraded over total land area, can be differentiated between different types of LD (e.g., urban development, agriculture, barren) when considering land use and land cover (LULC) change analysis. This study demonstrates that it is important to consider not only the overall anthropogenic LD status and trend over time, but also the type of LD to confirm LDN. This study's innovation is that it leverages remote-sensing-based LULC change analysis to evaluate LDN by different types of LD using the state of Ohio (OH) as a case study. Almost 67% of land in OH experienced anthropogenic LD primarily due to agriculture (81%). All six soil orders were subject to various degrees of anthropogenic LD: Mollisols (88%), Alfisols (70%), Histosols (58%), Entisols (55%), Inceptisols (43%), and Ultisols (22%). All land developments in OH can be linked to damages from LD, with 10,116.3 km2 developed, resulting in midpoint losses of 1.4 x 1011 kg of total soil carbon (TSC) and a midpoint social cost of carbon dioxide emissions (SC-CO2) of $24B (where B = billion = 109, USD). Overall, the anthropogenic LD trend between 2001 and 2016 indicated LDN, however, during the same time, there was a six percent increase in developed area (577.6 km2), which represents a consumptive land conversion that likely caused the midpoint loss of 8.4 x 109 kg of TSC and a corresponding midpoint of $1.4B in SC-CO2. New developments occurred adjacent to current urban areas, near the capital city of Columbus, and other cities (e.g., Dayton, Cleveland). Developments negated OH's overall LDN because of multiple types of damages: soil C loss, associated realized soil C social costs (SC-CO2), and loss of soil C sequestration potential. The state of OH has very limited potential land (1.2% of the total state area) for nature-based solutions (NBS) to compensate for the damages, which extend beyond the state's boundaries because of the greenhouse gas emissions (GHG).
Changes in land use significantly impact landslide occurrence, particularly in mountainous areas in northern Thailand, where human activities such as urbanization, deforestation, and slope modifications alter natural slope angles, increasing susceptibility to landslides. To address this issue, an appropriate method using soilbags has been widely used for slope stabilisation in northern Thailand, but their effectiveness and sustainability require assessment. This research highlights the need to evaluate the stability of the soilbag-based method. In this study, a case study was conducted in northern Thailand, focusing on an area characterised by high-risk landslide potential. This research focuses on numerical evaluation the slope stability of soilbag-reinforced structures and discusses environmental sustainability. The study includes site investigations using an unmanned aerial photogrammetric survey for slope geometry evaluation and employing the microtremor survey technique for subsurface investigation. Soil and soilbag material parameters are obtained from existing literatures. Modelling incorporates hydrological data, slope geometry, subsurface conditions, and material parameters. Afterwards, the pore-water pressure results and safety factors are analysed. Finally, the sustainability of soilbags is discussed based on the Sustainable Development Goals (SDGs). The results demonstrate that soilbags effectively mitigate pore-water pressures, improve stability, and align with several SDGs objectives. This study enhances understanding of soilbags in slope stabilisation and introduces a sustainable landslide mitigation approach for landslide-prone regions.
The concept of soil quality (SQ) is defined as the soil's capacity to function, which is commonly assessed at the field scale. Soil quality is composed of inherent (soil suitability) and dynamic (soil health, SH) SQ, which can also be analyzed using geospatial tools as a SQ continuum (SQC). This study proposes an innovative spatiotemporal analysis of SQ degradation and emissions from land developments using the state of Iowa (IA) in the United States of America (USA) as a case study. The SQ degradation was linked to anthropogenic soil (SD) and land degradation (LD) in the state. More than 88% of land in IA experienced anthropogenic LD primarily due to agriculture (93%). All six soil orders were subject to various degrees of anthropogenic LD: Entisols (75%), Inceptisols (94%), Histosols (59%), Alfisols (79%), Mollisols (93%), and Vertisols (98%). Soil and LD have primarily increased between 2001 and 2016. In addition to agricultural LD, there was also SD/LD caused by an increase in developments often through urbanization. All land developments in IA can be linked to damages to SQ, with 8385.9 km2 of developed area, causing midpoint total soil carbon (TSC) losses of 1.7 x 1011 kg of C and an associated midpoint of social cost of carbon dioxide emissions (SC-CO2) of $28.8B (where B = billion = 109, USD). More recently developed land area (398.5 km2) between 2001 and 2016 likely caused the midpoint loss of 8.0 x 109 kg of C and a corresponding midpoint of $1.3B in SC-CO2. New developments are often located near urban areas, for example, near the capital city of Des Moines, and other cities (Sioux City, Dubuque). Results of this study reveal several different kinds of SQ damage from developments: loss of potential for future C sequestration in soils, soil C loss, and realized soil C social costs (SC-CO2). The state of IA has very limited potential land (2.0% of the total state area) for nature-based solutions (NBS) to compensate for SD and LD. The results of this study can be used to support pending soil health-related legislation in IA and monitoring towards achieving the Sustainable Development Goals (SDGs) developed by the United Nations (UN) by providing a landscape-level perspective on LD to focus field-level initiatives to reduce soil loss and improve SQ. Future technological innovations will provide higher spatial and temporal remote sensing data that can be fused with field-level direct sensing to track SH and SQ changes.
Flash floods are a major threat to life and properties in arid regions. In recent decades, Egypt has experienced severe flash floods that have caused significant damage across the country, including the Red Sea region. The aim of this study is to map the flood hazards in flood-prone areas along the Red Sea region using a Geographic Information System (GIS)-based morphometric analysis approach. To evaluate the flood hazard degree, the adopted methodology considers various morphometric parameters such as basin area, slope, sinuosity index, shape factor, drainage intensity, circularity ratio, and curve number. GIS techniques were employed to delineate the watershed and the drainage network. The delineated watershed was used together with the digitized maps of soil and land use types to estimate the curve number and the morphometric parameters for each subbasin. The flood hazard degrees are calculated based on the considered morphometric parameters and distinguished based on a five-degree scale ranging from very low to very high. Results indicate that 47% of the study area has a very high flood hazard degree. Furthermore, morphometric analysis results align with the runoff results simulated by a hydrological model, where, for example, basins with a high to very high hazard degree exhibited high runoff. This suggests the influence of physical characteristics on the hydrological behavior of the watershed and further validates the morphometric analysis presented in this work. The results presented here can help policy planners and decision-makers develop appropriate measures to mitigate flash floods and achieve sustainable development in arid regions.
Current soil- and land degradation seriously challenge our societies; it contributes to climate change, loss of biodiversity and loss of agricultural productions. Yet, soils are also seen as a major part of the solution, if maintained or restored to provide ecosystem services. Climate-smart sustainable management of soils can provide options for soil health maintenance and restoration. In the European Union, the resource management and sustainability challenge are addressed in the Green Deal that, among other goals, aspires towards a healthy climate-resilient agricultural sector that will produce sufficient products without damaging ecosystems and contribute to better biodiversity and mitigate climate change. The European Joint Programme (EJP) SOIL was set up to contribute to these goals by developing knowledge, tools and an integrated research community to foster climate-smart sustainable agricultural soil management that provides a diversity of ecosystem service, such as adapting to and mitigating climate change, allowing sustainable food production, and sustaining soil biodiversity. This paper provides an overview of the potential of climate-smart sustainable soil management research to the targets of the Green Deal that are related to soils most directly. The EJP SOIL EU-wide consultation (interviews and questionnaires) and literature analysis (national and international reports and papers) done in the first year (2020-2021) generated a wealth of data. This data showed that there are specific manners to do research that are essential for it to be effective and efficient and that can actively contribute to the Green Deal targets. We concluded that research needs to be: (i) interdisciplinary, (ii) long-term, (iii) multi-scaled, from plot to landscape, (iv) evaluating trade-offs of selected management options for ecosystem services and (v) co-constructed with key stakeholders. Research on climate-smart sustainable soil management should be developed (1) on plot scale when mobilizing soil processes and on landscape scale when addressing sediment and water connectivity and biodiversity management; and (2) address the enabling conditions through good governance, social acceptance and viable economic conditions. A guideline to European agricultural soil management: three layers for sustainable soil management: the biosphere: healthy soils and (bio)diverse landscapes (green bar); solutions: based on functioning of the natural system (yellow bar); enabling conditions: finding the social and economic enable conditions (blue bar).image