The chemical composition of meltwater-draining Himalayan glacierized basins reflects the dominance of carbonic acid in weathering of silicate and carbonate minerals, yet the role of sulfuric acid-mediated reactions in the mineral weathering and ionic release is still unclear. Here, we present a long-term study (1992-2018) of chemical weathering characteristics of a precipitation-dominated glacierized basin (Dokriani glacier) of central Himalaya. By using new and reprocessed datasets of major ions from the glacial/subglacial zones of the glacier, we suggest that two-thirds of the dissolved load of the meltwater derives from sulfuric acid-mediated weathering of minerals and rocks. We observed a clear control of carbonic acid-mediated reactions in the early ablation periods, while sulfuric acid-mediated reactions dominate in peak and late ablation periods. The slopes and intercepts in best-fit regressions of [*Ca2+ + *Mg2+ vs *SO42- and HCO3-] and [HCO3- vs *SO42-] in meltwater were following the stoichiometric parameters of sulfide oxidation coupled to carbonate dissolution reactions. The glaciers of the central and western Himalaya are in good agreement with the present estimates. We contend that the bedrock lithology has limited or second-order effects over the ionic release from Himalayan glaciers and surmise that these patterns are broadly applicable to the other orogenic systems of the world.
Permafrost degradation is altering biogeochemical processes throughout the Arctic. Thaw-induced changes in organic matter transformations and mineral weathering reactions are impacting fluxes of inorganic carbon (IC) and alkalinity (ALK) in Arctic rivers. However, the net impact of these changing fluxes on the concentration of carbon dioxide in the atmosphere (pCO(2)) is relatively unconstrained. Resolving this uncertainty is important as thaw-driven changes in the fluxes of IC and ALK could produce feedbacks in the global carbon cycle. Enhanced production of sulfuric acid through sulfide oxidation is particularly poorly quantified despite its potential to remove ALK from the ocean-atmosphere system and increase pCO(2), producing a positive feedback leading to more warming and permafrost degradation. In this work, we quantified weathering in the Koyukuk River, a major tributary of the Yukon River draining discontinuous permafrost in central Alaska, based on water and sediment samples collected near the village of Huslia in summer 2018. Using measurements of major ion abundances and sulfate (SO42-) sulfur (S-34/S-32) and oxygen (O-18/O-16) isotope ratios, we employed the MEANDIR inversion model to quantify the relative importance of a suite of weathering processes and their net impact on pCO(2). Calculations found that approximately 80% of SO42- in mainstem samples derived from sulfide oxidation with the remainder from evaporite dissolution. Moreover, S-34/S-32 ratios, C-13/C-12 ratios of dissolved IC, and sulfur X-ray absorption spectra of mainstem, secondary channel, and floodplain pore fluid and sediment samples revealed modest degrees of microbial sulfate reduction within the floodplain. Weathering fluxes of ALK and IC result in lower values of pCO(2) over timescales shorter than carbonate compensation (similar to 10(4) yr) and, for mainstem samples, higher values of pCO(2) over timescales longer than carbonate compensation but shorter than the residence time of marine SO42- (similar to 10(7) yr). Furthermore, the absolute concentrations of SO42- and Mg2+ in the Koyukuk River, as well as the ratios of SO42- and Mg2+ to other dissolved weathering products, have increased over the past 50 years. Through analogy to similar trends in the Yukon River, we interpret these changes as reflecting enhanced sulfide oxidation due to ongoing exposure of previously frozen sediment and changes in the contributions of shallow and deep flow paths to the active channel. Overall, these findings confirm that sulfide oxidation is a substantial outcome of permafrost degradation and that the sulfur cycle responds to permafrost thaw with a timescale-dependent feedback on warming.
Mounting evidence suggests that biogeochemical processing of permafrost substrate will amplify dissolved inorganic carbon (DIC = Sigma[CO2,HCO3-,CO32-]) production within Arctic freshwaters. The effects of permafrost thaw on DIC may be particularly strong where terrain subsidence following thaw (thermokarst) releases large amounts of sediment into fluvial networks. The mineral composition and chemical weathering of these sediments has critical yet untested implications for the degree to which streams represent a source of CO2 to the atmosphere vs. a source of bicarbonate to downstream environments. Here, we experimentally determine the effects of mineral weathering on fluvial CO2 by incubating sediments collected from three retrogressive thaw slump features on the Peel Plateau (NWT, Canada). Prehistoric warming and contemporary thermokarst have exposed sediments on the Peel Plateau to varying degrees of thaw and chemical weathering, allowing us to test the role of permafrost and substrate mineral composition on CO2:HCO3- balance. We found that recently-thawed sediments (within years to decades) and previously un-thawed tills from deeper permafrost generated substantial amounts of solutes and DIC. These solutes and the mineralogy of sediments suggested that carbonate weathering coupled with sulfide oxidation was a net source of abiotic CO2. Yet, on average, more than 30% of this CO2 was converted to bicarbonate via carbonate buffering reactions. In contrast, the mineralogy and geochemical trends associated with sediments from the modern and paleo-active layer, which were exposed to thaw over longer timescales than deeper permafrost sediments, more strongly reflected silicate weathering. In treatments with sediment from the modern and paleo-active layer, minor carbonate and sulfide weathering resulted in some DIC and net CO2 production. This CO2 was not measurably diminished by carbonate buffering. Together, these trends suggest that prior exposure to thaw and weathering on the Peel Plateau reduced carbonate and sulfide in upper soil layers. We conclude that thermokarst unearthing deeper tills on the Peel Plateau will amplify regional inorganic carbon cycling for decades to centuries. However, CO2 consumption via carbonate buffering may partly counterbalance CO2 production and release to the atmosphere. Regional variability in the mineral composition of permafrost, thaw history, and thermokarst intensity are among the primary controls on mineral weathering within permafrost carbon-climate feedbacks.