共检索到 2

Subarctic palsa mires are natural indicators of the status of permafrost in its sporadic distribution zone. Estimation of the rate of their thawing can become an auxiliary indicator to predict climate shifts. The formation, growth, and degradation of palsas are dynamic processes that depend on seasonal weather fluctuations and local environmental factors. Therefore, accurate forecasts of palsas conditions and related ecosystem shifts must be based on a broad set of attributes of palsas from different regions of the Northern Hemisphere. With this in mind, we studied two palsa mires sites on the Kola Peninsula, for which no thorough descriptions were previously available. The first site, Chavanga, is at the southern limit of the permafrost zone under unfavorable climatic conditions and is a collapsing relic. The second site, Ponoy, in contrast, is within the sporadic permafrost zone with relatively cold and dry conditions. Our dataset was created by combining several methods to produce detailed spatial models of permafrost for the studied palsa mires. We used 3D ground-penetrating radar (GPR) survey, UAV-based orthophoto maps, peat thermometry, time-domain reflectometry, and manual sampling. We developed two integrated geospatial models that describe the active layer, the configuration of the palsa frozen core, and its thermal state and identify the zones of the most intense thawing. These observations revealed a significant thermal effect of the groundwater flow and its critical role in the palsas segmentation and rapid collapse. We have investigated a regulating effect of micromorphological features of palsa mounds such as heights, slope, depressions, and mire mineral bed through groundwater drainage. As a result, two new scenarios for the palsa degradation process have been developed, emphasizing the influence of environmental factors on the permafrost condition.

期刊论文 2025-04-06 DOI: 10.1002/ppp.2276 ISSN: 1045-6740

Permafrost, a key component of the arctic and global climate system, is highly sensitive to climate change. Observed and ongoing permafrost degradation influences arctic hydrology, ecology and biogeochemistry, and models predict that rapid warming is expected to significantly reduce near-surface permafrost and seasonally frozen ground during the 21st century. These changes raise concern of how permafrost thaw affects the exchange of water and energy with the atmosphere. However, associated impacts of permafrost thaw on the surface energy balance and possible feedbacks on the climate system are largely unknown. In this study, we show that in northern subarctic Sweden, permafrost thaw and related degradation of peat plateaus significantly change the surface energy balance of three peatland complexes by enhancing latent heat flux and, to less degree, also ground heat flux at the cost of sensible heat flux. This effect is valid at all radiation levels but more pronounced at higher radiation levels. The observed differences in flux partitioning mainly result from the strong coupling between soil moisture availability, vegetation composition, albedo and surface structure. Our results suggest that ongoing and predicted permafrost degradation in northern subarctic Sweden ultimately result in changes in land-atmosphere coupling due to changes in the partitioning between latent and sensible heat fluxes. This in turn has crucial implications for how predictive climate models for the Arctic are further developed.

期刊论文 2016-01-01 DOI: 10.3402/tellusb.v68.30467 ISSN: 1600-0889
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页