共检索到 5

This research targets straw return in Farm 852's albic soil, China. The soil is nutrient-poor with few microbes and slow straw decomposition. Through fixed-point sampling and bacterial screening, an actinomycete consortium consisting of four strains was assembled, and two of them were identified as new actinomycetes. After 7 days of fermentation, the lignocellulose degradation rates of this consortium outstripped those of single strains, with cellulose degraded at 69.07%, hemicellulose at 64.98%, and lignin at 68.95%. FTIR, XRD, and SEM verified the damage inflicted on the straw structure. Lab simulations found group D (with the consortium) had a higher straw weight loss rate than group C (with commercialized microbial agents) and controls. The compound actinomycetes stepped up the bacterial abundance with the passage of time. In contrast, their effect on fungal abundance was hardly noticeable, but they had markedly ameliorated the soil fertility. These findings prove that the microbial consortium effectively accelerates straw decomposition and boosts soil microbe abundance and fertility in albic soil. It shows great potential for straw return and provides a microbial solution for this field.

期刊论文 2025-02-01 DOI: 10.3390/microorganisms13020385

Straw returning (R) combined with the application of a decomposition agent (RD) can increase crop yield and soil carbon (C) storage. However, the effect of RD on soil nitrous oxide (N2O) emissions in tropical areas remains poorly understood. In this study, an in situ experiment was performed under different water management strategies (long-term flooding or alternate wetting and drying) with the R and RD treatments to evaluate soil N2O emissions and rice yield. The SOC and TN contents were significantly lower under the RD treatment than under the R treatment. The R treatment significantly increased rice yield; however, the yield was further significantly increased under the RD treatment. The soil N2O emissions and yield-scaled N2O emissions were higher under the R treatment than under the no-straw-returning treatment. However, the RD treatment greatly reduced soil N2O emissions and yield-scaled N2O emissions under various water management strategies compared with those under the R treatment. Moreover, yield-scaled N2O emissions were lower in the RD treatment than in the control. The soil N2O emissions and yield-scaled N2O emissions were distinctly higher under alternate wetting and drying than under long-term flooding. Our results indicated that long-term flooding and straw returning with decomposition agents can effectively increase rice yield and reduce soil N2O emissions in tropical areas.

期刊论文 2024-12-01 DOI: 10.3390/agronomy14123060

Straw return and plastic film mulching are two critical management measures that not only maintain high and stable crop yields, but also have a significant impact on the ecological environment. However, there is still a lack of research on the comprehensive effects of straw return and different film mulching treatments on the ecological environment. Thus, a 2-year field experiment was conducted and six treatments, which included two main treatments, namely straw return (SR) and non-straw return (NR), and three sub-treatments, namely no film mulching (CK), plastic film mulching (PM) and fully biodegradable film mulching (BM), were applied in a garlic cropping system. Based on the life cycle assessment method, six endpoint damage categories, resource consumption, global warming potential, environmental acidification, eutrophication, human health, and ecotoxicity, were assessed. Furthermore, we also evaluated the costs and economic benefits of the six treatments and optimized the treatment of used mulch and straw off-farm. The results indicated that the environmental impacts of the six endpoint damages in the garlic cropping system were ranked as ecotoxicity, eutrophication, environmental acidification, global warming potential, human health, and resource consumption. The SR-BM treatment had the lowest life cycle environmental impact composite index at 27.68 per unit area, followed by SR-PM at 27.75. All six endpoint damage categories for the PM and BM treatments were lower than the CK treatment per t of yield, with the SR-BM treatment being the most economically efficient, yielding at 3691.03 CNYt-1 and exceeding that of the SR-CK treatment by 7.26%. Fertilizer inputs were the primary contributor to resource consumption, global warming potential, environmental acidification, eutrophication, and ecotoxicity, accounting for about 72.80% of these five environmental impacts. Crop protection significantly affected human health, and garlic mulching helped minimize pesticide use, thereby reducing potential health impacts. Compared to straw incineration and waste mulch power generation, straw power generation and waste mulch recycling granulation offered positive environmental benefits and were more effective offset strategies. In conclusion, straw return with biodegradable mulch is a synergistic cultivation measure that offers both environmental and economic benefits. For straw return with plastic film mulch, environmental impacts can be reduced by waste mulch recycling granulation.

期刊论文 2024-12-01 DOI: 10.3390/agronomy14122993

The decomposition of returned straw is increasing facing the negative impacts by metal nanoparticles (NPs), however, which may be modulated by soil fauna and this modulation effect is unclear. Here, the interactive effects of ZnO NPs with soil fauna on wheat straw decomposition were investigated in a potted rice cropping system. The results showed that ZnO NP below middle concentrations did not significantly influence straw decomposition, and mass loss was mainly driven by microfauna and microbes. High concentrations of ZnO NPs significantly impeded decomposition, mainly by reducing the complexity of fungal communities. This negative effect was ascribed to the promotion of Zn solubilization by bacterial taxa such as unclassified Acidobacteria, Bacteroidetes and Gemmatimonadetes. ZnO NPs had a greater impact on soil microorganisms than on fauna, reduced microbial activity, promoted the released straw nutrients entering into the soil by damaging nutrient transferring microorganisms and dominated the effects on soil stoichiometry. However, soil fauna significantly increased the activities of C- and N-releasing enzymes, decreased the activity of P-releasing enzymes, regardless of ZnO NP concentration, and promoted straw C decomposition. ZnO NPs altered soil microbial community composition, but these changes were modulated by soil fauna. Nonetheless, nutrient transport by fungi such as Ascomycota and Zygomycota and grazing by fauna were the predominant modulators on straw stoichiometry. The results of this study revealed that rational control of soil fauna will be helpful for promoting straw decomposition and efficient recycling of straw nutrients by crops under ZnO NP contamination. High ZnO NP concentrations inhibit straw decomposition mainly by reducing diversity of fungal community.The negative effects of ZnO NPs are ascribed to Zn solubilization by bacterial taxa such as unclassified Acidobacteria, Bacteroidetes and Gemmatimonadetes.ZnO NPs have greater impact on soil microorganisms than on fauna, reduce microbial activity, promote the released nutrients into soil and dominate the effects on soil stoichiometry.Fungal transport (e.g., Ascomycota and Zygomycota) and fauna grazing are the predominant modulators on straw stoichiometry.

期刊论文 2024-08-01 DOI: 10.1007/s41742-024-00610-9 ISSN: 1735-6865

Introduction: Straw return has been widely recognized as an important carbon (C) enhancement measure in agroecosystems, but the C-phosphorus (P) interactions and their effects on plants in saline soils are still unclear. Methods: In this study, we investigated the effects of straw return and three P application levels, no P fertilizer (Non-P), a conventional application rate of P fertilizer (CP), and a high application rate of P fertilizer (HP), on maize growth and soil C and P fractions through a pot experiment. Results and discussion: The results revealed that the dry matter weight of maize plant was no difference between the two straw return levels and was 15.36% higher under HP treatments than under Non-P treatments. Plant nutrient accumulations were enhanced by straw addition and increased with increasing P application rate. Straw application reduced the activities of peroxidase (POD), superoxide dismutase (SOD), catalase, and the content of malondialdehyde (MDA) in maize plants by 31.69%, 38.99%, 45.96% and 27.04%, respectively. P application decreased SOD, POD activities and MDA content in the absence of straw. The contents of easily oxidized organic carbon (EOC), particulate organic carbon (POC) and the ratio of POC/SOC in straw-added soils were 10.23%, 17.00% and 7.27% higher, respectively, than those in straw-absent soils. Compared with Non-P treatments, HP treatments led to an increase of 12.05%, 23.04% in EOC, POC contents respectively, while a decrease of 18.12% in the contribution of MAOC to the SOC pool. Straw return improved the P status of the saline soil by increasing soil available P (14.80%), organic P (35.91%) and Ca-2-P contents (4.68%). The structural equation model showed that straw and P applications could promote maize growth (indicated by dry matter weight, P accumulation, antioxidant enzyme activity and MDA content) through improving soil C and P availabilities. Conclusion: This study provides evidence that straw return together with adequate P supply in saline soil can promote crop nutrient accumulation, attenuate the oxidation damage on crop growth, and be beneficial for SOC turnover and soil P activation.

期刊论文 2024-01-19 DOI: 10.3389/fpls.2024.1336300 ISSN: 1664-462X
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-5条  共5条,1页