In performance-based design, it is crucial to understand deformation characteristics of geocell layers in soil under footing loads. To explore this, a series of laboratory loading tests were carried out to investigate the influence of varying parameters on the strain levels within the geocell layer in a sandy soil under axial strip footing loading. The results were analyzed in terms of maximum strain levels, strain variation along the geocell layer and the correlation between horizontal and vertical strains. In this study, the maximum observed strain levels for geocellreinforced strip footing systems reached 2.3 % for horizontal (tensile) strain and 1.4 % for vertical (compressive) strain. Furthermore, most strain levels were concentrated within a distance of 1.5 times the footing width from the axis of strip footing. In geocell-reinforced footing systems, the interaction between horizontal and vertical strains becomes a key factor, with the ratio of horizontal to vertical cell wall strains ranging approximately from 1 to 2.5. The outcomes of this study are expected to contribute to the practical applications of geocell-reinforced footing systems.
This paper investigates the anisotropic characteristics of Champlain marine clay soil using a combination of laboratory techniques. A modified oedometer cell with a piezoelectric ring actuator technique was used to measure shear wave velocity during consolidation stages. The axisymmetric design of the oedometer allowed for the determination of shear wave velocity in both the vertical and horizontal planes. The preliminary findings reveal that the sensitive marine clay is inherently anisotropic, with lower preconsolidation pressure for horizontally consolidated specimens and faster propagation of shear waves in the plane parallel to the bedding layer. High-precision strain gauges integrated into the consolidation ring were used to evaluate horizontal stress during the one-dimensional consolidation test. The ability to determine mean effective stress enables the normalization of shear wave velocities using this stress, providing more coherent empirical correlations in terms of shear wave velocity. Scanning electron microscopy was used to examine the microstructure of clay specimens, providing qualitative and quantitative insight into the restructuring and reorientation of clay platelets under consolidation stress. The consistency of the results through both micro and macro-scale analyses confirms the reliability of the experimental approach, highlighting its potential for future studies on the anisotropy of Champlain marine clay fabrics.