In landslide studies, particle size is a key quantitative indicator, reflecting the formation and development of the sliding zone. It plays a crucial role in understanding the mechanisms and evolutionary processes that lead to landslide occurrences. Precise measurement of particle size is crucial. This study centered on soil samples from the Lanniqing landslide in Southwest China. To begin, seven distinct methods were used to preprocess the soil samples. Next, the particle size frequency distribution was measured using the Mastersizer 2000 laser particle size analyzer. Key parameters, including median particle size, mean particle size, sorting coefficient, skewness, and kurtosis, were then compared and analyzed to determine the most appropriate preprocessing method for evaluating the characteristics of the soil samples. The mechanism of landslide occurrence was subsequently analyzed by examining the particle size characteristics, mechanical properties, and mineral composition of the soil samples. The results suggested that method C provides the most reliable analysis of particle size characteristics in soil samples. The observed coarsening of coarse particles, along with a significant increase in clay content within the sliding zone, indicates that the sliding surface has undergone multiple shear and compression events. The interplay of the upper traffic load and slope cutting at the front edge set the stage for the Lanniqing landslide, prompting the initial development of potential sliding surfaces. Rainfall acts as a catalyst for slope instability. The high clay content, combined with the formation of a low-permeability layer rich in clay minerals on the sliding surface, leads to excessive pore water pressure and mineral lubrication. These factors inherently trigger and accelerate the occurrence of the landslide.
In order to reveal the destructive mechanism of loess landslide induced by stagnant water on the combined surface, and to clarify the influence of the main control factors, this paper takes a typical loess landslide in northern Shaanxi as the research object, analyzes the structure of the rock and soil body, and the excavation and filling construction through the geohazard survey, and analyzes the process of traction sliding caused by the stagnant water on the combined surface at the different stages of the project by combining with the calculation of the stability of the slope body. Further the article analyses the process of traction sliding caused by water on the combined area due to construction by means of a discrete element model, and delves into the mechanism of strength reduction of saturated loess. The results show that: 1) the combined surface stagnant water type loess landslide has the characteristics of sudden sliding and rapid evolution, which is highly hazardous and difficult to prevent and control; 2) the slope destabilization is controlled by the engineering geological conditions, and the slope excavation changes the original mechanical equilibrium conditions of the slope, which provides the dynamic conditions for the traction sliding of the slope; 3) the change of the hydrogeological environment results in the obstruction of the natural drainage channel, which leads to the formation of continuous sliding surface due to stagnant water on the combined surface, and the formation of a continuous sliding surface due to stagnant water on the combined surface. Surface stagnant water to form a continuous slippery surface, inducing the overall destabilization of the slope damage; 4) loess strength index with the increase of saturation and the exponential function form of reduction, and when the saturation degree reaches more than 80%, the strength index of the soil body to reach the basic stability. The article expanding the ideas of landslide control and analysis, and the research results will provide a theoretical basis for the design of junction landslide management in the loess areas of northern Shaanxi.
Disasters occurring at loess slopes in seasonal frozen regions are closely related to changes in the thermo-hydro-mechanical (THM) state in loess by freeze-thaw (FT) action. Current research on FT-induced soil slope failure focuses on frozen stagnant water effects, while the intrinsic connection between the FT-induced stagnant water effect and soil strength deterioration remains unclear. In this study, by taking the FT-induced loess slope failure as an example, field surveys, boreholes, exploratory wells, and 3D topographic mapping were used to reveal the landslide features and stratigraphic information; Furthermore, the temporal and spatial variation of water and heat in loess slope was revealed by on-site monitoring data; A THM coupled model of frozen soil was established using COMSOL Multiphysics simulation software to reconstruct the frozen stagnant water process of shallow loess slope, as well as the influence of THM field on loess landslide. The results show that the effects of FT in the seasonally frozen region occurred in the shallow layer of the loess slope. The water-ice phase transition during FT process broke the phase equilibrium of loess. Numerical calculations and field monitoring indicated a continuous migration of water to the freezing front, creating a water-enriched zone inside the loess. Both the impact of the frozen stagnant water and changes in the stress field led to the degradation of loess structure and reduced the strength properties, thus threatening the stability of the loess slope. The study results can contribute to an in-depth understanding of the mechanism underlying FT loess landslides in seasonal frozen regions, and provide a scientific basis for the evaluation and prevention of FT landslides. In the process of freezing and thawing, water migration occurs in the loess slope, resulting in the frozen stagnant water effect, which makes the water enriched in the slope. This makes the mechanical strength parameters of loess deteriorate. The effect of frost heave and thaw settlement destroys the soil structure and makes the soil particles rearrange. This threatens the stability of loess slope. image