Previous studies have reported the existence of water ice in the lunar polar regions, but estimations of water ice using different methods vary in certainty, precision, location, and abundance. Spectral analysis is one of the major ways for estimating lunar water ice abundance. However, low spatial resolution and signal-to-noise ratio are the disadvantages of hyperspectral images. In this study, the images captured by the multi-band imager (MI), characterized by higher spatial resolution and signal-to-noise ratio than hyperspectral images, onboard the Japanese Moon orbiter Selenological and Engineering Explorer (SELENE), are used to retrieve water ice in lunar polar regions. We analyzed reflectance in near-infrared bands after topographic correction to reduce the misinterpretation of the properties of the lunar surface. Through qualitative spectral analysis and quantitative water ice retrieval, the water ice abundance of sunlit areas in Shackleton Crater, de Gerlache Rims 1 and 2, Connecting Ridge, Connecting Ridge extension, and Peak Near Shackleton are obtained. The sunlit inner wall of Shackleton Crater has the highest possibility to contain water ice among the four regions, the estimated abundance ranges from 2 to 3 wt.%, which is consistent with previous studies in terms of order of magnitude. Reproducibility test suggests that the parallax effect of MI is small to ensure robust conclusions. When artificial noise was introduced, water ice abundance variations were limited to 1 wt.% in only a few areas, revealing that the results exhibit robustness against noise interference.
Flash droughts tend to cause severe damage to agriculture due to their characteristics of sudden onset and rapid intensification. Early detection of the response of vegetation to flash droughts is of utmost importance in mitigating the effects of flash droughts, as it can provide a scientific basis for establishing an early warning system. The commonly used method of determining the response time of vegetation to flash drought, based on the response time index or the correlation between the precipitation anomaly and vegetation growth anomaly, leads to the late detection of irreversible drought effects on vegetation, which may not be sufficient for use in analyzing the response of vegetation to flash drought for early earning. The evapotranspiration-based (ET-based) drought indices are an effective indicator for identifying and monitoring flash drought. This study proposes a novel approach that applies cross-spectral analysis to an ET-based drought index, i.e., Evaporative Stress Anomaly Index (ESAI), as the forcing and a vegetation-based drought index, i.e., Normalized Vegetation Anomaly Index (NVAI), as the response, both from medium-resolution remote sensing data, to estimate the time lag of the response of vegetation vitality status to flash drought. An experiment on the novel method was carried out in North China during March-September for the period of 2001-2020 using remote sensing products at 1 km spatial resolution. The results show that the average time lag of the response of vegetation to water availability during flash droughts estimated by the cross-spectral analysis over North China in 2001-2020 was 5.9 days, which is shorter than the results measured by the widely used response time index (26.5 days). The main difference between the phase lag from the cross-spectral analysis method and the response time from the response time index method lies in the fundamental processes behind the definitions of the vegetation response in the two methods, i.e., a subtle and dynamic fluctuation signature in the response signal (vegetation-based drought index) that correlates with the fluctuation in the forcing signal (ET-based drought index) versus an irreversible impact indicated by a negative NDVI anomaly. The time lag of the response of vegetation to flash droughts varied with vegetation types and irrigation conditions. The average time lag for rainfed cropland, irrigated cropland, grassland, and forest in North China was 5.4, 5.8, 6.1, and 6.9 days, respectively. Forests have a longer response time to flash droughts than grasses and crops due to their deeper root systems, and irrigation can mitigate the impacts of flash droughts. Our method, based on cross-spectral analysis and the ET-based drought index, is innovative and can provide an earlier warning of impending drought impacts, rather than waiting for the irreversible impacts to occur. The information detected at an earlier stage of flash droughts can help decision makers in developing more effective and timely strategies to mitigate the impact of flash droughts on ecosystems.
The exploration of water ice on the lunar surface is a recent hot topic in planetary science. In particular, the South Pole-Aitken (SPA) region of the Moon is the most promising candidate site and has attracted significant attention. However, most of the previous studies have manually analyzed observation data from limited areas within the SPA region, which is laborious and costly. Therefore, this study aims to automatically generate a geological map of the SPA region by applying multiple clustering methods. The results show that the results of C-Means and Spectral Clustering are close to those of manual analysis.