在列表中检索

共检索到 1

The recent combination of significantly reduced launch costs and the confirmed presence of water ice on the Moon presents new opportunities for lunar construction beyond the constraints of traditional In-Situ Resource Utilization (ISRU). This study investigates an alternative approach that incorporates Earth-supplied cement with lunar-derived resources to manufacture concrete directly on the lunar surface. In this concept, cement is transported from Earth, while lunar rocks are processed into aggregate and water ice is electrolyzed to provide the water and atmosphere necessary for concrete mixing. The resulting precast blocks are assembled into modular arch structures and covered with regolith for thermal and radiation protection. A comparative cost analysis shows that if launch costs fall from current levels (approximately US $1,410/kg) to projected levels under systems like Starship (US $10/kg), transportation costs for materials and equipment to build a habitat for two could drop from around US $138.6 million to just US $0.98 million. This roughly 99% reduction implies that conventional concrete-based construction may become economically viable for early lunar infrastructure. However, further research is needed in key areas such as performance of concrete structure under vacuum condition, in-situ water extraction efficiency, and optimization of regolith covering design.

期刊论文 2025-07-05 DOI: 10.1080/12269328.2025.2528669 ISSN: 1226-9328
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-1条  共1条,1页