Soil nitrogen-hydrolyzing enzymes catalyzes a key rate-limiting step in regulating the circulation of soil nutrient elements. The response of soil nitrogen (N)-hydrolyzing enzyme activities to environmental changes has been investigated in different geographic scales or ecosystems. Global warming has increased the frequency of soil freeze-thaw (FT) events, resulting in drastic changes in soil enzyme activities. Clarifying the changes in soil N-hydrolyzing enzymes under freeze-thaw conditions is essential for improving the N cycling and utilization efficiency in soil. However, how soil N-hydrolyzing enzymes respond to FT remains unclear. This study was aimed to analyze the influence of FT on soil N-hydrolyzing enzyme activity in Mollisols. The results showed that soil physicochemical properties and enzyme activities were changed after freeze-thaw events, and freeze-thaw temperature (FTF) had a greater impact on these properties than the number of freeze-thaw cycles (FTC). Correlation analysis showed that total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP) and pH were the major factors affecting enzyme activities in FT events. Soil N-hydrolyzing enzyme activity was mainly regulated by environmental factors, which can directly and indirectly affect the soil enzyme activity. In the soil ecosystem, pH, TOC, TN and TP were important factors in counteracting damage to enzyme activity from FT effects and a suitable environment and adequate nutrients can limit damage to enzymes from FT events. The findings will better predictions the changing patterns of climate change on soil N-hydrolyzing enzyme activity.
These days, one of the main issues preventing agricultural development is salinized soils. Potassium fulvic acid (PFA) not only regulates plant growth, but also improves the soil nutrient content and physical structure, which makes it a soil conditioner worth promoting. Nevertheless, the research conducted thus far on the subject of PFA with regard to plant growth and inter-root microbial communities remains somewhat limited in scope. In this study, a pot experiment was conducted to simulate both the normal environment and salt stress environment. The objective of this experiment was to verify the effect of PFA on the growth of blueberry (Vaccinium corymbosum L.) as well as its effect on the soil physical and chemical indices and the soil microbial community structure. The findings demonstrated that the implementation of potassium fulvic acids exhibited a minimal impact on the growth of blueberry plants under standard environmental conditions. However, it was observed to exert a substantial effect on enhancing various physiological parameters, including plant height, root activity, and chlorophyll synthesis, particularly in response to salt stress. PFA led to a substantial augmentation in the soil organic matter content, alongside a notable rise in the alkali-hydrolyzable nitrogen (AN) and available potassium (AK) content. Concurrently, PFA caused a notable escalation in the activities of soil urease, sucrase, acid phosphatase, and catalase (p < 0.05) in the salt-stressed environment. PFA increased the abundance of Acidobacteria, Myxococcota, Ascomycota, and Fungi_phy_Incertae_sedis under salt stress, which was mainly related to the decrease in electrical conductivity (EC) values and increase in soil acid phosphatase (S-ACP) activity. It is evident that the implementation of PFA is advantageous in enhancing the saline environment, mitigating the impact of salt damage on blueberries and establishing a foundation for the expansion of cultivated areas and the sustainable cultivation of blueberries.
Pine wilt disease (PWD) is a devastating forest disease that severely impacts pine trees, with widespread outbreaks leading to catastrophic damage in pine forests worldwide. Our study aims to investigate the dynamics of PWD infection on soil physicochemical properties and biological activities, as well as the interrelationships between them. Soil samples were collected from 0 to 10 cm and 10 to 20 cm depths in subtropical Pinus massoniana (Masson pine) forests with PWD infection years of 0 (non-infection), 6, 10, and 16 years. The physicochemical properties, microbial biomass, and enzymatic activities of these soil samples were measured. The results revealed that soil non-capillary porosity, clay, microbial biomass carbon and microbial biomass nitrogen decreased significantly in 6 years forests. Available potassium consistently decreased with longer invasion periods, while soil polyphenol oxidase, leucine amino peptidase, and available phosphorous peaked in 6 years forests and then declined over time. The soil physicochemical properties, biological activities all decreased as soil depth increased. Redundancy analysis and Mantel tests underscored the critical role of Total potassium, pH, Total phosphorous, and bulk density in shaping microbial activities. This study demonstrated that PWD infection significantly effect on soil physicochemical properties, microbial biomass, and enzymatic activities with the chronosequence progresses. These finding contribute to a deeper understanding of how invasive pathogens like PWD can reshape soil environments, with implications for forest conservation and restoration practices.
AimsPecan (Carya cathayensis Sarg.) is an important forest trees in China, the application of chemical pesticides for disease control has caused severe damage to the soil, including reduced fertility and disruption of microbial communities. Although Trichoderma treatment has been shown to promote plant growth and improve soil quality, its effects on the growth promotion of pecan and the impact on soil microbial communities and physicochemical properties remained unclear.MethodsIn this study, we investigated the impact of T. asperellum TCS007 spore suspension and its fermented crude extract on the growth and development of pecan seedlings. We also explored the effects of TCS007 treatment on the nutrients, enzyme activities, and microbial diversity in the rhizosphere soil of pecan seedlings during their three main growth stages.ResultsTreatment with TCS007 spore suspension or crude extract promoted the growth of pecan seedlings, with significantly higher levels of leaf hormones and defense enzyme activity compared to the control (CK). Moreover, the content of soil organic matter and ammonium nitrogen, as well as the activity of soil enzymes such as catalase and urease, were all significantly higher than CK after treatment, and the soil pH shifted from slightly acidic to slightly alkaline. The results indicated that TCS007 treatment significantly increased the richness of beneficial fungi and bacteria in the soil.ConclusionThe results demonstrated that TCS007 treatment significantly promoted the growth of pecan plants, increased enzyme activity and nutrient content in the soil, and improved the soil micro-ecological environment.
Subsidence from coal mining is a major environmental issue, causing significant damage to soil structure. Soil microorganisms, highly sensitive to environmental changes, adapt accordingly. This study focused on four areas of the Burdai coal mine: a non-subsidence area (CK), half-yearly (HY), 1-year (OY), and 2-year (TY) subsidence areas. Using high-throughput sequencing and molecular ecological network analysis, we examined soil microbial community diversity and structure across these zones, exploring microbial community assembly and functional predictions. Results showed that compared to the control, subsidence areas experienced reduced soil water content, organic matter, available phosphorus, and alkaline nitrogen, with the lowest levels observed at 1 year. These values began to rise after 1 year, suggesting natural recovery after subsidence stabilized. Microbial communities were closely related to soil organic matter, water content, and alkaline nitrogen. At the 1-year mark, soil property changes significantly reduced microbial diversity, which then began to recover after 2 years. The microbial network during 1-year subsidence was simpler, with 102 nodes, 179 edges, and an average degree of 3.51, indicating that early subsidence was unstable, and the microbial community was still adapting. By 1 year, community structure and interactions had begun to stabilize. Stochastic processes played a key role in microbial variability during short-term subsidence.
Organic inputs from aboveground litter and underground roots are an important factor affecting nutrient cycling in forest ecosystems. However, we still know little about the seasonal effects of the interaction between aboveground and underground organic inputs on soil organic carbon, nutrients and microorganisms after vegetation restoration in degraded red soil. Therefore, we focused on a mixed forest dominated by Schima superba and Pinus massoniana that had been restored for 27 years on eroded and degraded red soil in a subtropical region. Five treatments were set as follows: retaining aboveground litter + retaining root + retaining mycorrhizae (LRM, control treatment), doubling aboveground litter + retaining root + retaining mycorrhizae (DLRM), removing aboveground litter + retaining root + retaining mycorrhizae (NRM), removing aboveground litter + removing root + retaining mycorrhizae (NNM), and removing aboveground litter + removing root + removing mycorrhizae (NNN). After more than three years of treatment, DLRM, NRM, NNM, and NNN treatments reduced soil moisture content by 32.0-56.8 % in the rainy season compared with the LRM treatment. Soil total nitrogen and ammonium nitrogen concentrations were the highest in the DLRM treatment. Soil ammonium concentration and pH were higher in the rainy season than those in the dry season, while soil nitrate concentration was higher in the dry season. Soil available phosphorus concentration in the dry season decreased by 64.5 % in the DLRM treatment, while they were 2.0-10.7 times of those in the LRM, NRM, NNM, and NNN treatments compared to the rainy season. Soil microbial communities were dominated by bacteria across treatments, accounting for 74.0-75.5 % of the total phospholipid fatty acid (PLFA) of soil microbes, and there was no significant difference among treatments. Except for fungi, the total PLFAs of soil microorganisms and the PLFA content of each microbial taxon were higher in the dry season than those in the rainy season. The F/B value in the rainy season was higher than that in the dry season. The PLFA contents of gram-positive bacteria and actinomyces in the DLRM and NRM treatments were higher than those in the NNM treatment, and PLFA contents of both in the dry season were 1.5 and 1.6 times of those in the rainy season, respectively. Soil total phosphorus and pH had the highest contribution to soil microbial community changes in rainy and dry seasons, respectively. Comprehensive evaluation showed that double aboveground litter addition was more conducive to soil quality improvement. In conclusion, litter, roots and mycorrhiza manipulations affected the PLFA contents of soil microorganisms through the regulation of soil physicochemical properties, rather than the proportions of each microbial taxon in the total PLFAs, which was related to the season. The results can provide a theoretical basis for soil quality improvement as driven by soil microorganisms during the restoration of degraded red soil.
PurposeThe health of rhizosphere soil microorganisms is an important indicator to evaluate soil quality. Therefore, understanding the response of rhizosphere soil microorganisms to tobacco crop succession is crucial for promoting the sustainable development of agriculture.MethodsThe microbial diversity and community structure of rhizosphere soil in continuous cropping and non-cropped tobacco for 7 years were analyzed by the Illumina platform.Result(1) Continuous cropping tobacco cause rhizosphere soil acidification and reduction in alkaline nitrogen (AN) and soil organic matter (SOM). (2) Continuous cropping tobacco reduces the diversity of rhizosphere soil microbial communities, increasing harmful functional microorganisms and declining beneficial ones. (3) The abundance of bacteria that perform nitrification and saprophytic fungi in the rhizosphere soil of continuous cropping areas decreases, inhibiting carbon and nitrogen cycling processes. (4) The composition and diversity of the soil rhizosphere microbial community are affected by the imbalance in the physicochemical property of the rhizosphere.ConclusionContinuous cropping tobacco cause rhizosphere soil acidification and nutrient imbalance, and the carbon and nitrogen cycles involved in microorganisms were damaged. Furthermore, the decreased diversity of rhizosphere soil microorganisms and the increased abundance of pathogenic fungi contribute to the continuous cropping obstacles of tobacco.
Limited knowledge about the variation patterns of bacterial community composition in the sand and vegetative ecosystems confines our understanding regarding the contribution of the sand dune to desert areas. In this study, 454 pyrosequencing platforms were adopted to determine the community structure of bacteria and diversity of sand dunes in northeastern Qinghai-Tibet Plateau, China: 50 cm deep, rhizosphere, physical crusts, and biological crusts representing sand and vegetative ecosystems, respectively. The findings revealed significant variation in bacterial diversities and the structure of communities in the sand and vegetative ecosystems. The dominant bacterial phyla of sand and vegetative ecosystems were Firmicutes (47%), Actinobacteria (21%), Proteobacteria (16%), and Bacteroidetes (13%), while Lactococcus (50%) was found to be the dominant genus. Furthermore, samples with high alpha-diversity indices (Chao 1 and Shannon) for the vegetative ecosystem have the lowest modularity index and the largest number of biomarkers, with some exceptions. Redundancy analysis exhibited that environmental factors could explain 72% (phyla) and 67% (genera) of the bacterial communities, with EC, TC, and TOC being the major driving factors. This study expands our understanding of bacterial community composition in the desert ecosystem. The findings suggest that variations in the sand and vegetative ecosystems, such as those predicted by environmental factors, may reduce the abundance and diversity of bacteria, a response that likely affects the provision of key ecosystem processes by desert regions.