共检索到 214

Abandoned farmlands are increasing due to socio-economic changes and land marginalization, and they require sustainable land management practices. Biocrusts are a common cover on the topsoil of abandoned farmlands and play an important role in improving soil stability and erosion resistance. The critical functions of biocrusts are known to mostly rely on their biofilaments and extracellular polymeric substances (EPS), but how these components act at microscopic scale is still unknown, while rheological methods are able to provide new insights into biocrust microstructural stability at particle scale. Here, bare soil and two representative types of biocrusts (cyanobacterial and moss crusts) developed on sandy (Ustipsamments) and sandy loam (Haplustepts) soils in abandoned farmlands in the northern Chinese Loess Plateau were collected at a sampling depth of 2 cm. Changes in the rheological properties of the biocrusts were analyzed with respect to their biofilament network and EPS contents to provide possible explanations. The rheological results showed that compared with bare soil, storage and loss moduli were decreased by the biocrusts on sandy soil, but they were increased by the biocrusts on sandy loam soil. Other rheological parameters tau max, gamma L, gamma YP, and Iz of biocrusts on both soils were significantly higher than those of bare soil, showing higher viscoelasticity. And the moss crusts had about 10 times higher rheological property values than the cyanobacterial crusts. Analysis from SEM images showed that the moss crusts had higher biofilament network parameters than the cyanobacterial crusts, including nodes, crosslink density, branches, branching ratio and mesh index, and biofilament density, indicating that the biofilament network structure in the moss crusts was more compact and complex in contrast to the cyanobacterial crusts. Additionally, EPS content of the moss crusts was higher than that of the cyanobacterial crusts on both soils. Overall, the crosslink density, biofilament density, and EPS content of the biocrusts were significantly and positively correlated with their gamma YP and Iz. The interaction between crosslink density and biofilament density contributed 73.2 % of gamma YP, and that between crosslink density and EPS content contributed 84.0 % of Iz. Our findings highlight the biocrusts-induced changes of abandoned farmland soil rheological properties in drylands, and the importance of biocrust biofilament network and EPS in maintaining abandoned farmland soil microstructural stability to resist soil water/wind erosion and degradation, providing a new perspective for sustainable management of abandoned farmlands.

期刊论文 2025-11-01 DOI: 10.1016/j.still.2025.106651 ISSN: 0167-1987

Soil erosion can be effectively controlled through vegetation restoration. Specifically, roots combine with soil to form a root-soil complex, which can effectively enhance soil shear strength and play a crucial role in soil reinforcement. However, the relationship between root mechanical traits and chemical compositions and shear performance and reinforcing capacity of soil is still inadequate. In this study, we determined the root chemical properties, performed root tensile tests and root-soil composite triaxial tests using two plants-one with a fibrous root system (ryegrass, Lolium perenne L.) and the other with a tap root system (alfalfa, Medicago sativa L.)-and calculated the factor of safety (FOS). The results revealed that the relationship between root diameter and tensile strength differed among different root characters. Holocellulose content and cellulose content were the main factors controlling the root tensile strength of ryegrass and alfalfa, respectively. The shear properties of the root-soil complex (cohesion (c) and internal friction angle (phi)) are correlated with soil water content (SWC) and root mass density (RMD). Root traits had a more substantial effect on c than phi, with significant differences in c between ryegrass and alfalfa at 7 % and 11 % SWC. The root-soil complex had an optimum RMD, and the maximum increase rates of c were 80.57 % and 34.4 %, respectively. Along slopes, sliding first occurs at the foot of the slope, thus demanding emphasis on protection and reinforcement. On steep gradients with low SWC, ryegrass strongly contributes to soil reinforcement, whereas alfalfa is more effective on gentle gradients with high SWC. The results provide scientific references for species selection for vegetation restoration in the Loess Plateau and a deeper understanding of the mechanical mechanism of soil reinforcement by roots.

期刊论文 2025-10-01 DOI: 10.1016/j.still.2025.106625 ISSN: 0167-1987

Freeze-thaw cycles (FTC) influence soil erodibility (K-r) by altering soil properties. In seasonally frozen regions, the coupling mechanisms between FTC and water erosion obscure the roles of FTC in determining soil erosion resistance. This study combined FTC simulation with water erosion tests to investigate the erosion response mechanisms and key drivers for loess with varying textures. The FTC significantly changed the mechanical and physicochemical characteristics of five loess types (P < 0.05), especially reducing shear strength, cohesion, and internal friction angle, with sandy loam exhibiting more severe deterioration than silt loam. Physicochemical indices showed weaker sensitivity to FTC versus mechanical properties, with coefficients of variation below 5 %. Wuzhong sandy loess retained the highest K-r post-FTC, exceeding that of the others by 1.04 similar to 2.25 times, highlighting the dominant role of texture (21.37 % contribution). Under different initial soil moisture contents (SMC), K-r increased initially and then stabilized with successive FTC, with a threshold effect of FTC on K-r at approximately 10 FTC. Under FTC, the K-r variation rate showed a concave trend with SMC, turning point at 12 % SMC, indicating that SMC regulates freeze-thaw damage. Critical shear stress exhibited an inverse response to FTC compared to K-r, displaying lower sensitivity. The established K-r prediction model achieved high accuracy (R-2 = 0.87, NSE = 0.86), though further validation is required beyond the design conditions. Future research should integrate laboratory and field experiments to expand model applicability. This study lays a theoretical foundation for research on soil erosion dynamics in freeze-thaw-affected areas.

期刊论文 2025-10-01 DOI: 10.1016/j.jhydrol.2025.133489 ISSN: 0022-1694

Deep-rooted maize plants utilize water and nutrients more effectively, particularly in compacted soil. However, the mechanisms by which different maize genotypes adjust root angles in response to compaction remain underexplored. We conducted a two-year study (2021-2022) on silty loam soils in the North China Plain. We tested two genotypes of maize [one with naturally deep roots (DR) and another with shallow roots (SR)] in compacted (C) and non-compacted (NC) soil. Soil compaction impeded shoot growth in both genotypes; however, DR exhibited better growth than SR. Under compacted conditions, DR maintained steeper root angles and demonstrated superior mechanical strength with larger root cortex areas (increased by 60 %) and stele (increased by 92 %), as well as higher cellulose concentration (up to 146 %). Notably, PIEZO1 gene expression increased significantly (up to 242 %) in DR under compaction, suggesting its role in root structural enhancement, unlike in SR where it remained unchanged. These findings underscore the importance of genetic, anatomical, and biochemical adaptations in maize roots, facilitating their resilience to soil compaction. Such insights could inform the breeding of maize genotypes that are better adapted to diverse soil conditions, potentially boosting agricultural productivity.

期刊论文 2025-10-01 DOI: 10.1016/j.still.2025.106620 ISSN: 0167-1987

Mesh-free methods, such as the Smooth Particle Hydrodynamics (SPH) method, have recently been successfully developed to model the entire wetting-induced slope collapse process, such as rainfall-induced landslides, from the onset to complete failure. However, the latest SPH developments still lack an advanced unsaturated constitutive model capable of capturing complex soil behaviour responses to wetting. This limitation reduces their ability to provide detailed insights into the failure processes and to correctly capture the complex behaviours of unsaturated soils. This paper addresses this research gap by incorporating an advanced unsaturated constitutive model for clay and sand (CASM-X) into a recently proposed fully coupled seepage flow-deformation SPH framework to simulate a field-scale wetting-induced slope collapse test. The CASM-X model is based on the unified critical state constitutive model for clay and sand (CASM) and incorporates a void-dependent water retention curve and a modified suction-dependent compression index law, enabling the accurate prediction various unsaturated soil behaviours. The integration of the proposed CASM-X model in the fully coupled flow deformation SPH framework enables the successful prediction of a field-scale wetting-induced slope collapse test, providing insights into slope failure mechanisms from initiation to post-failure responses.

期刊论文 2025-10-01 DOI: 10.1016/j.compgeo.2025.107353 ISSN: 0266-352X

Seismic risk assessment of code-noncompliant reinforced concrete (RC) frames faces significant challenges due to structural heterogeneity and the complex interplay of site-specific hazard conditions. This study aims to introduce a novel framework that integrates three key concepts specifically targeting these challenges. Central to the methodology are fragility fuses, which employ a triplet of curves-lower bound, median, and upper bound-to rigorously quantify within-class variability in seismic performance, offering a more nuanced representation of code-noncompliant building behavior compared to conventional single-curve approaches. Complementing this, spectrum-consistent transformations dynamically adjust fragility curves to account for regional spectral shapes and soil categories, ensuring site-specific accuracy by reconciling hazard intensity with local geotechnical conditions. Further enhancing precision, the framework adopts a nonlinear hazard model that captures the curvature of hazard curves in log-log space, overcoming the oversimplifications of linear approximations and significantly improving risk estimates for rare, high-intensity events. Applied to four RC frame typologies (2-5 stories) with diverse geometries and material properties, the framework demonstrates a 15-40 % reduction in risk estimation errors through nonlinear hazard modeling, while spectrum-consistent adjustments show up to 30 % variability in exceedance probabilities across soil classes. Fragility fuses further highlight the impact of structural heterogeneity, with older, non-ductile frames exhibiting 25 % wider confidence intervals in performance. Finally, risk maps are presented for the four frame typologies, making use of non-linear hazard curves and spectrumconsistent fragility fuses accounting for both local effects and within-typology variability.

期刊论文 2025-09-15 DOI: 10.1016/j.engstruct.2025.120676 ISSN: 0141-0296

Hidden soil caves pose a serious threat to the stability and safety of subgrades. In this study, using the two-dimensional particle flow discrete element code, a total of eight subgrade models with circular soil caves of different dimensions, depths, and locations were established. Under self-weight and superimposed loading, the deformation characteristics of fill subgrade models, such as the evolution of displacement field and crack development process, were analyzed. The results show that under the self-weight, after the fill subgrade model of soil caves with diameters of 2 m, 4 m, 6 m, and 8 m is stable, the overlying soil layer of the soil cave corresponds to the transformation of slag falling, block falling, collapse and rapid collapse, respectively. The larger the dimension of the soil cave, the larger the number of cracks and damage areas, and the more prone the fill subgrade is to collapse. The superimposed load makes the fill subgrade compress from shallow to deep, significantly increasing the overall subgrade deformation, the number of cracks, and the development range. The evolution of the displacement field and crack propagation of the fill subgrade are also controlled by the buried depth and location of the soil cave. Whether the fill subgrade collapses is comprehensively controlled by the dimension and buried depth of the soil cave, the mechanical parameters of the soil layer, the load, and its scope of action. Thus, a comprehensive criterion of cylindrical collapse of the soil layer above the soil cave is constructed.

期刊论文 2025-09-01 DOI: 10.1016/j.engfailanal.2025.109716 ISSN: 1350-6307

Soil compaction caused by heavy agricultural machinery poses a significant challenge to sustainable farming by degrading soil health, reducing crop productivity, and disrupting environmental dynamics. Field traffic optimization can help abate compaction, yet conventional algorithms have mostly focused on minimizing route length while overlooking soil compaction dynamics in their cost function. This study introduces Soil2Cover, an approach that combines controlled traffic farming principles with the SoilFlex model to minimize soil compaction by optimizing machinery paths. Soil2Cover prioritizes the frequency of machinery passes over specific areas, while integrating soil mechanical properties to quantify compaction impacts. Results from tests on 1000 fields demonstrate that our approach achieves a reduction in route length of up to 4-6% while reducing the soil compaction on headlands by up to 30% in both single-crop and intercropping scenarios. The optimized routes improve crop yields whilst reducing operational costs, lowering fuel consumption and decreasing the overall environmental footprint of agricultural production. The implementation code will be released with the third version of Fields2Cover, an open-source library for the coverage path planning problem in agricultural settings.

期刊论文 2025-08-01 DOI: 10.1007/s11119-025-10250-4 ISSN: 1385-2256

In the loess tableland, gully slope instability induces severe soil erosion and land degradation, yet the synergistic effects of dominant vegetation under varying restoration modes combined with dynamic rainfall regimes and topographic variations on gully slope stabilization mechanisms remain inadequately quantified. Therefore, the dominant vegetation species under natural (NR) and artificial restoration (AR) was chosen as the object. Through field sampling, root-soil complex mechanical experiments, and numerical simulations, the protection effect of dominant vegetation under different restoration modes combination with rainfall and topographic variations was investigated. The result revealed significant differences in basic soil physical properties, root morphological characteristics, root and root-soil complex mechanical properties among five dominant vegetated plots under the different restoration modes (P < 0.05). The soil properties in the Scop plot under AR were slightly better than those in the other plots. The roots in the Spp plot developed better under NR. The shear strength of Lespedeza bicolor Turcz. was the highest under NR. The tensile strength of Digitaria sanguinalis (L.) Scop. was greatest under AR. The tensile force and tensile strength of single roots exhibited a significant positive linear correlation and a significant negative exponential correlation, with root diameter, respectively (P < 0.01). For the unstable gully slopes (F-s < 1.0), maximum displacement occurred at the slope foot, where tensile shear failure dominated, while the interior experienced compressive yielding. The grey relational analysis identified rainfall intensity as the primary destabilizing factor, followed by dominant vegetation species, slope height, and slope gradient. Notably, when rainfall intensity reaches or exceeds 0.06 m/h, or when slope height exceeds 20 m combined with long-duration rainfall, the regulatory impacts of dominant vegetation under different restoration modes on the gully slope stability are substantially diminished and become negligible. This study provides a theoretical basis for gully slope protection and ecological environmental construction in loess tableland.

期刊论文 2025-08-01 DOI: 10.1016/j.catena.2025.109067 ISSN: 0341-8162

This study investigated how soil properties affect levee erosion and foundation scouring by evaluating the behavior of loose and cohesive (mixed) soils beneath a rigid crest under overflow conditions and analyzing flow dynamics within the scoured hole to understand the scouring mechanism. Four cases were examined with varying overtopping depths (Od): LS-FS, LS-FM, and LM-FS, at Od = 2 cm, and LS-FM at Od = 3 cm, where 'L' stands for levee, 'F' for foundation, 'S' for sand (#8), and 'M' for mixed soil (20% silt + 80% sand #8). The results revealed distinct differences among the cases. Notably, erosion of the back slope in the LM-FS case was delayed fourfold compared to LS-FS. In the LS-FM case, breaching of the levee body was delayed by 1.6 times compared to the LS-FS case with a 2 cm overtopping depth. Moreover, different scour hole geometries with complex flow patterns occurred in different timespans. Particle image velocimetry (PIV) was utilized on two physical scoured hole models to analyze the flow behavior within these scoured holes. The PIV analysis revealed the formation of twin eddies, moving in opposite directions and shaped by the nappe flow jet, which was instrumental in the development of the scour holes. This study found that foundation cohesion is more essential than the levee body in delaying levee breaches under rigid crest. Additionally, it revealed the role of twin eddies, especially the levee-side eddy, in increasing the size of the scoured hole upstream and causing levee breaches.

期刊论文 2025-07-01 DOI: 10.1007/s40999-025-01089-x ISSN: 1735-0522
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共214条,22页