When stone columns or vertical drains are applied to improve soils, it is common to face situations where the soft soil layer is too thick to be penetrated completely. Although consolidation theories for soils with partially penetrated vertical drains or stone columns are comprehensive, consolidation theories for impenetrable composite foundations containing both two types of drainage bodies have been few reported in the existing literature. Equations governing the consolidation of the reinforced zone and unreinforced zone are established, respectively. Analytical solutions for consolidation of such composite foundations are obtained under permeable top with impermeable bottom (PTIB) and permeable top with permeable bottom (PTPB), respectively. The correctness of proposed solutions is verified by comparing them with existing solutions and finite element analyses. Then, extensive calculations are performed to analyze the consolidation behaviors at different penetration rates, including the total average consolidation degree defined by strain or stress and the distribution of the average excess pore water pressure (EPWP) along the depth. The results show that the total average consolidation rate increases as the penetration rate increases; for some composite foundations with a low penetration rate, the consolidation of the unreinforced zone cannot be ignored. Finally, according to the geological parameters provided by an actual project, the obtained solution is used to calculate the settlement, and the results obtained by the proposed solution are in reasonable agreement with the measured data.
This study focuses on the underground shallow gas detection project in the Lingkun Island area of the northern entrance tunnel of the Wenzhou City Light Rail S2 line. Based on geological exploration data of shallow gas, we chose the technique of controlled-release gas with static pressure as the experimental foundation, integrating various technologies such as multifunctional in-situ probing, electrical methods, and seismic waves, comprehensively researching shallow gas detection technology in the Lingkun Island area. We conducted field probing experiments to accurately obtain the physical and mechanical properties of gas-rich soil layers and further studied the possibility of determining gas-rich locations. By applying parallel electrical methods, we can accurately identify and distinguish areas of anomalous resistivity in shallow geological structures. Based on abnormal changes in acoustic impedance in strata, we used seismic wave methods, including seismic CT and seismic wave scattering technology, to accurately reveal the presence and depth of shallow gas, providing reliable basis for accurate determination of shallow gas. Finally, we summarized a comprehensive plan for underground shallow gas detection technology, covering on-site data collection, data processing, and image interpretation of results, which will provide valuable references for future shallow gas exploration in relevant areas.