共检索到 2

Smoky haze which occurs during large-scale wildfires essentially transforms the radiative regime of the atmosphere over large territories. The variability of shortwave radiation fluxes in a smoke-laden atmosphere is driven by variations in the optical and microphysical properties of smoke aerosols, including the spectral dependences of the imaginary part of the refractive index. These dependences are determined by the presence of black carbon, brown carbon, and radiation-selective absorbing organic compounds in aerosol particles. This study analyzes the aforementioned spectral dependences based on AERONET data during large-scale wildfires in Alaska in 2019 and Canada in 2023. The analysis includes the cases of extreme radiation absorption by black and brown carbon, where the imaginary part of the refractive index at a wavelength of 440 nm attained 0.50 and 0.27, respectively. Variations in the spectral dependence of the imaginary part of the refractive index under moderate manifestations of selective absorption of smoke aerosol during massive fires in Alaska and Canada are analyzed. Approximations for the spectral dependence of the imaginary part of the refractive index are suggested. The aerosol radiative forcing at the top of the atmosphere is estimated for the cases of extreme radiation absorption by black carbon and brown carbon in the visible and near-infrared spectral regions and of anomalous selective absorption. The results can be useful in monitoring of the radiative regime of the atmosphere and for the development of atmospheric remote sounding techniques.

期刊论文 2025-06-01 DOI: 10.1134/S1024856025700058 ISSN: 1024-8560

According to satellite monitoring data (MODIS/Terra), the spatial distribution of the aerosol optical depth (AOD) at a wavelength of 550 nm for the summer smog of 2007 over the North China Plain (NCP) and adjacent areas has been obtained. Areas over which the AOD is higher due to regional anthropogenic contamination sources near Beijing and Shanghai, as well as the smoke haze forming due to agricultural burning (the southwest part of the NCP), have been revealed. The similarity of optical and microphysical characteristics of aerosol in the smoke haze over the NCP and in the Russian territory has been found: (i) the decisive contribution to the optical characteristics of smoke aerosol is made by the fine mode and (ii) the attenuation spectra in the wavelength region 340-1020 nm are approximated (in logarithmic coordinates) by parabolas or fourth degree polynomials. The monitoring data at the AERONET Beijing site show that the single scattering albedo in the summer smog over the NCP is on average less (0.91) than in the smoke haze in the Russian territory (0.95-0.96). The radiative regimes of the atmosphere are significantly different: in the smog, the aerosol radiative forcing efficiency is lower approximately by 30% at the top of the atmosphere and higher by 30% at the bottom of the atmosphere than in the smoke haze.

期刊论文 2019-11-01 DOI: 10.1134/S102485601906006X ISSN: 1024-8560
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页