A renewed interest in Moon exploration has been forming in recent years due to its close proximity as well as identification of key resources such as water ice in Lunar polar regions. Furthermore, the launch industry has been transforming with increased availability in the variety and instance of spacecraft launchers. Additionally, rideshare missions are becoming the new norm. Rideshare missions not only to LEO but even to Geosynchronous Transfer Orbit are currently available, reducing the cost of access to the deep space. Electric propulsion is also becoming more widespread. Advances in these varied fields will possibly converge in capable small spacecraft designs that will be able to carry out complex missions in deep space. This particular study focuses on identifying key sizing parameters of such a spacecraft. An initial trajectory design utilizing AGI's Systems Tool Kit (STK) was carried out involving low-thrust orbit raising from Geosynchronous Transfer Orbit with eventual Lunar capture. Preliminary lunar station keeping was examined. Later, key design parameters such as eclipse times, communication durations etc. were investigated. Overall, a broad framework was obtained upon which optimization studies and preliminary design can be conducted.
Lunar IceCube is a 6U CubeSat that is designed to detect and observe lunar volatiles from a highly inclined orbit. This spacecraft, equipped with a low-thrust engine, is expected to be deployed from the upcoming Exploration Mission-1 vehicle. However, significant uncertainty in the deployment conditions for secondary payloads impacts both the availability and geometry of transfers that deliver the spacecraft to the lunar vicinity. A framework that leverages dynamical systems techniques is applied to a recently updated set of deployment conditions and spacecraft parameter values for the Lunar IceCube mission, demonstrating the capability for rapid trajectory design.