共检索到 2

Ground subsidence is a common urban geological hazard in several regions worldwide. The settlement of loess fill foundations exhibits more complex subsidence issues under the coupled effects of geomechanical and seepage-driven processes. This study selected 21 ascending Sentinel-1 A radar images from April 2023 to October 2024 to monitor the loess fill foundation in Shaanxi, China. To minimize errors caused by the orbital phase and residual flat-earth phase, this research combined PS-InSAR technology with the three-threshold method to improve the SBAS-InSAR processing workflow, thereby exploring time-series deformation of the loess fill foundation. Compared with conventional SBAS-InSAR technology, the improved SBAS-InSAR technique provided more consistent deformation time-series results with leveling data, effectively capturing the deformation characteristics of the fill foundation. Additionally, geographic information system (GIS) spatial analysis techniques and statistical methods were employed to analyze the overall characteristics and spatiotemporal evolution of the ground surface deformation in the study area. On the other hand, the major drivers of the subsidence in the study area were also discussed based on indoor experiments and engineering geological data. The results showed gradual and temporal shifts of the subsidence center toward areas with the maximum fill depths. In addition, two directions of uneven subsidence were observed within the fill foundation study area. The differences in the fill depth and soil properties caused by the building foundation construction were the main factors contributing to the uneven settlement of the foundations. Foundation deformation was also positively and negatively affected by surface water infiltration. This study integrates remote sensing and engineering geological data to provide a scientific basis for accurately monitoring and predicting loess fill foundation settlement. It also offers practical guidance for regional infrastructure development and geological hazard prevention.

期刊论文 2025-06-25 DOI: 10.1016/j.enggeo.2025.108098 ISSN: 0013-7952

This study examines the performance of mat foundations in 13 blocks of eight-story concrete-walled residential buildings. Topographic monitoring bolts were used to monitor the slab's construction, which was 0.35 m thick and comprised an area of 225 m2. Using the collected data, a retro-analysis of the modulus of elasticity was conducted to obtain the geotechnical parameters for forecasting the settlement using the elasticity theory. A nonlinear approach for construction modeling and soil-structure interactions showed that the earthworks at the start of construction had a significant role in settling. Blocks in landfills settled faster than those in land-cut zones. The partial execution of building levels was found to be critical in terms of angular distortions and stresses in the concrete slab. The partial lifting of the foundation plate was confirmed in blocks with partial building floor execution, demonstrating the importance of assessing the foundation's behavior at this stage. The modulus of elasticity dropped as construction progressed, with landfill parts being particularly vulnerable. Creep settlements contributed significantly, accounting for about 20% of the total settlements in some blocks. The numerical staged construction model accurately replicated the behaviors observed in the monitoring data, confirming the hypothesis of the partial raising of the foundation during the building process, which resulted in higher angular distortions. Based on the results obtained, the authors strongly recommend that the simultaneous consideration of soil-structure interactions and construction effects be commonly used in foundation designs.

期刊论文 2024-03-01 DOI: 10.3390/buildings14030746
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页