本文基于两幅Sentinel-1雷达卫星影像,利用像素偏移追踪技术提取出普若岗日冰川及4条典型冰川的表面流速信息并绘制冰川流速场,以研究普若岗日冰川在2023年9—10月的表面流速和流速分布特征。利用像素偏移追踪技术对两幅SAR影像进行精确配准,得到同名像元在水平方向的像素偏移量,从而获取冰川表面流速。基于冰川流速场对普若岗日冰川表面流速和流速分布特征进行分析,结果表明,普若岗日冰川的表面流速整体上较缓慢,平均流速约为0.05 m/d,普若岗日西北部、东北部、中部和西南部4条典型冰川主要流动区域的平均流速分别约为0.20、0.19、0.15和0.04 m/d。研究发现,普若岗日冰川空间位置分布不同的区域,其流速特征也有所不同,主要表现为普若岗日东北部典型冰川比西南部典型冰川的流速更快。
本文基于两幅Sentinel-1雷达卫星影像,利用像素偏移追踪技术提取出普若岗日冰川及4条典型冰川的表面流速信息并绘制冰川流速场,以研究普若岗日冰川在2023年9—10月的表面流速和流速分布特征。利用像素偏移追踪技术对两幅SAR影像进行精确配准,得到同名像元在水平方向的像素偏移量,从而获取冰川表面流速。基于冰川流速场对普若岗日冰川表面流速和流速分布特征进行分析,结果表明,普若岗日冰川的表面流速整体上较缓慢,平均流速约为0.05 m/d,普若岗日西北部、东北部、中部和西南部4条典型冰川主要流动区域的平均流速分别约为0.20、0.19、0.15和0.04 m/d。研究发现,普若岗日冰川空间位置分布不同的区域,其流速特征也有所不同,主要表现为普若岗日东北部典型冰川比西南部典型冰川的流速更快。
本文基于两幅Sentinel-1雷达卫星影像,利用像素偏移追踪技术提取出普若岗日冰川及4条典型冰川的表面流速信息并绘制冰川流速场,以研究普若岗日冰川在2023年9—10月的表面流速和流速分布特征。利用像素偏移追踪技术对两幅SAR影像进行精确配准,得到同名像元在水平方向的像素偏移量,从而获取冰川表面流速。基于冰川流速场对普若岗日冰川表面流速和流速分布特征进行分析,结果表明,普若岗日冰川的表面流速整体上较缓慢,平均流速约为0.05 m/d,普若岗日西北部、东北部、中部和西南部4条典型冰川主要流动区域的平均流速分别约为0.20、0.19、0.15和0.04 m/d。研究发现,普若岗日冰川空间位置分布不同的区域,其流速特征也有所不同,主要表现为普若岗日东北部典型冰川比西南部典型冰川的流速更快。
本文基于两幅Sentinel-1雷达卫星影像,利用像素偏移追踪技术提取出普若岗日冰川及4条典型冰川的表面流速信息并绘制冰川流速场,以研究普若岗日冰川在2023年9—10月的表面流速和流速分布特征。利用像素偏移追踪技术对两幅SAR影像进行精确配准,得到同名像元在水平方向的像素偏移量,从而获取冰川表面流速。基于冰川流速场对普若岗日冰川表面流速和流速分布特征进行分析,结果表明,普若岗日冰川的表面流速整体上较缓慢,平均流速约为0.05 m/d,普若岗日西北部、东北部、中部和西南部4条典型冰川主要流动区域的平均流速分别约为0.20、0.19、0.15和0.04 m/d。研究发现,普若岗日冰川空间位置分布不同的区域,其流速特征也有所不同,主要表现为普若岗日东北部典型冰川比西南部典型冰川的流速更快。
本文基于两幅Sentinel-1雷达卫星影像,利用像素偏移追踪技术提取出普若岗日冰川及4条典型冰川的表面流速信息并绘制冰川流速场,以研究普若岗日冰川在2023年9—10月的表面流速和流速分布特征。利用像素偏移追踪技术对两幅SAR影像进行精确配准,得到同名像元在水平方向的像素偏移量,从而获取冰川表面流速。基于冰川流速场对普若岗日冰川表面流速和流速分布特征进行分析,结果表明,普若岗日冰川的表面流速整体上较缓慢,平均流速约为0.05 m/d,普若岗日西北部、东北部、中部和西南部4条典型冰川主要流动区域的平均流速分别约为0.20、0.19、0.15和0.04 m/d。研究发现,普若岗日冰川空间位置分布不同的区域,其流速特征也有所不同,主要表现为普若岗日东北部典型冰川比西南部典型冰川的流速更快。
本文基于两幅Sentinel-1雷达卫星影像,利用像素偏移追踪技术提取出普若岗日冰川及4条典型冰川的表面流速信息并绘制冰川流速场,以研究普若岗日冰川在2023年9—10月的表面流速和流速分布特征。利用像素偏移追踪技术对两幅SAR影像进行精确配准,得到同名像元在水平方向的像素偏移量,从而获取冰川表面流速。基于冰川流速场对普若岗日冰川表面流速和流速分布特征进行分析,结果表明,普若岗日冰川的表面流速整体上较缓慢,平均流速约为0.05 m/d,普若岗日西北部、东北部、中部和西南部4条典型冰川主要流动区域的平均流速分别约为0.20、0.19、0.15和0.04 m/d。研究发现,普若岗日冰川空间位置分布不同的区域,其流速特征也有所不同,主要表现为普若岗日东北部典型冰川比西南部典型冰川的流速更快。
新疆内的高寒山区是高亚洲地区的重要组成部分,该区域内拥有大量规模较小的冰湖,部分冰湖在短时间内迅速扩大,并可能导致溃决洪水事件的发生。因此,提高对这些小型冰湖的制图精度对于深入理解冰川冰湖灾害机理至关重要。本研究利用Sentinel-2时序数据和DUNet语义分割模型,结合目视解译和质量控制,开展了2022年新疆高寒山区冰湖最大水域范围(≥新疆高寒山hm2)的提取;并根据冰湖与冰川的关系,将冰湖分为冰川补给湖(包括:冰面湖、冰川接触湖和冰川不接触湖3个亚类)和非冰川补给湖2类,最终得到2022年新疆高寒山区冰湖数据集。本数据集中冰湖总绝对面积误差为12.12 km,平均相对误差为6.14%。本数据集包括:(1)空间数据,即2022年研究区冰湖最大分布范围数据和新疆高寒山区分区;(2)表格数据,包括:2022年研究区不同区域、大小、类型、高程尺度下冰湖的数量与面积统计。数据集存储为shp和xlsx格式。可为新疆冰湖灾害预警、冰湖灾害评价提供数据支持和有效依据。
新疆内的高寒山区是高亚洲地区的重要组成部分,该区域内拥有大量规模较小的冰湖,部分冰湖在短时间内迅速扩大,并可能导致溃决洪水事件的发生。因此,提高对这些小型冰湖的制图精度对于深入理解冰川冰湖灾害机理至关重要。本研究利用Sentinel-2时序数据和DUNet语义分割模型,结合目视解译和质量控制,开展了2022年新疆高寒山区冰湖最大水域范围(≥新疆高寒山hm2)的提取;并根据冰湖与冰川的关系,将冰湖分为冰川补给湖(包括:冰面湖、冰川接触湖和冰川不接触湖3个亚类)和非冰川补给湖2类,最终得到2022年新疆高寒山区冰湖数据集。本数据集中冰湖总绝对面积误差为12.12 km2,平均相对误差为6.14%。本数据集包括:(1)空间数据,即2022年研究区冰湖最大分布范围数据和新疆高寒山区分区;(2)表格数据,包括:2022年研究区不同区域、大小、类型、高程尺度下冰湖的数量与面积统计。数据集存储为shp和xlsx格式。可为新疆冰湖灾害预警、冰湖灾害评价提供数据支持和有效依据。
新疆内的高寒山区是高亚洲地区的重要组成部分,该区域内拥有大量规模较小的冰湖,部分冰湖在短时间内迅速扩大,并可能导致溃决洪水事件的发生。因此,提高对这些小型冰湖的制图精度对于深入理解冰川冰湖灾害机理至关重要。本研究利用Sentinel-2时序数据和DUNet语义分割模型,结合目视解译和质量控制,开展了2022年新疆高寒山区冰湖最大水域范围(≥新疆高寒山hm2)的提取;并根据冰湖与冰川的关系,将冰湖分为冰川补给湖(包括:冰面湖、冰川接触湖和冰川不接触湖3个亚类)和非冰川补给湖2类,最终得到2022年新疆高寒山区冰湖数据集。本数据集中冰湖总绝对面积误差为12.12 km,平均相对误差为6.14%。本数据集包括:(1)空间数据,即2022年研究区冰湖最大分布范围数据和新疆高寒山区分区;(2)表格数据,包括:2022年研究区不同区域、大小、类型、高程尺度下冰湖的数量与面积统计。数据集存储为shp和xlsx格式。可为新疆冰湖灾害预警、冰湖灾害评价提供数据支持和有效依据。
新疆内的高寒山区是高亚洲地区的重要组成部分,该区域内拥有大量规模较小的冰湖,部分冰湖在短时间内迅速扩大,并可能导致溃决洪水事件的发生。因此,提高对这些小型冰湖的制图精度对于深入理解冰川冰湖灾害机理至关重要。本研究利用Sentinel-2时序数据和DUNet语义分割模型,结合目视解译和质量控制,开展了2022年新疆高寒山区冰湖最大水域范围(≥新疆高寒山hm2)的提取;并根据冰湖与冰川的关系,将冰湖分为冰川补给湖(包括:冰面湖、冰川接触湖和冰川不接触湖3个亚类)和非冰川补给湖2类,最终得到2022年新疆高寒山区冰湖数据集。本数据集中冰湖总绝对面积误差为12.12 km,平均相对误差为6.14%。本数据集包括:(1)空间数据,即2022年研究区冰湖最大分布范围数据和新疆高寒山区分区;(2)表格数据,包括:2022年研究区不同区域、大小、类型、高程尺度下冰湖的数量与面积统计。数据集存储为shp和xlsx格式。可为新疆冰湖灾害预警、冰湖灾害评价提供数据支持和有效依据。