Soil erosion is an important driver of land and ecological degradation, with hydraulic erosion in particular leading to widespread impacts and damage. As an important concept and indicator for characterizing the potential and pathways of sediment production and transportation within watersheds or on slopes, sediment connectivity has gained global attention and thus been analysed since its proposal in 2003. Sediment connectivity has become an effective metric for analysing the sources, processes, and potentials of soil erosion and sediment yield (SY) in watersheds, and it has been considered a popular research topic in the field of soil erosion over the past decade. Considering the lack of up-to-date systematic reviews of conceptual connotations, characterization indicators for sediment connectivity, and quantitative relationships between these indicators and erosion and SY, a bibliometric analysis of sediment connectivity was conducted via the CiteSpace tool, which is based on the Web of Science (WOS), Scopus (Elsevier) and China National Knowledge Infrastructure (CNKI) databases. In this research, the current state, popular topics, and trends in relevant studies were identified, and the conceptual connotations, influencing factors, and indicator algorithms of sediment connectivity and their quantitative relationships with soil erosion and SY were summarized. Furthermore, the contents and directions to be strengthened and improved in the future were determined. The results indicated that over the past 21 years, sediment connectivity has been analysed in 123 countries or regions. Researches have focused primarily on related concepts, indicators, scales, and influencing factors. This concept has been widely applied in various practices such as soil and water resource regulation, land use optimization, and soil erosion control. In previous studies, several linear (SY = a center dot IC + b) and exponential (SY = a center dot eb center dot IC) increasing relationships between sediment connectivity indicators (such as the index of connectivity (IC)) and SY at the slope or watershed scale have been established, facilitating the development of research on prediction and attribution analysis for the identification of sediment sources and changes. There is a consensus on what sediment connectivity is to date, but a unified and complete system has not been yet formed for sediment connectivity and several of its derived concepts. The Index of Connectivity (IC), as the primary means for quantitatively characterizing the status and distribution of sediment connectivity, has led to the creation of more than 20 different algorithms, whereas the included parameters mainly reflect the internal factors influencing topography and land use/cover. The effects of climatic factors and human activities have not been fully considered in previous studies, which has led to relatively backwards researching on functional connectivity indicators. Hence, the classification systems and theoretical frameworks for a series of concepts must be further refined on the basis of sediment connectivity, such as the objective openness, scale dependence, comprehensive impact, and distribution heterogeneity. Moreover, the amount of research on the influences of external drivers and the coupled effects of different factors on indicators of sediment connectivity should be increased. Nevertheless, it is still necessary to explore certain aspects, such as the parameter combinations and normalization methods of the upslope and downslope components of the IC algorithm, and to continuously improve the explanation of the dynamic changes in sediment while considering both hydrological connections along flow paths and off-site impacts on underlying surface variations. Moreover, there is a need to increase the spatiotemporal scale of research on sediment connectivity, explore its feedback mechanisms and close quantitative relationships with soil erosion and SY, focus on the integrated application of different indicators (methods), and validate and results via multisource information to promote relevant applications. The obtained results provide valuable reference for the refinement of theories and methods for sediment connectivity and enhance its support of studies of soil erosion and SY in watersheds.
Changes in land use and land cover (LULC) are becoming recognized as critical to sustainability research, particularly in the context of changing landscapes. Soil erosion is one of the most important environmental challenges today, particularly in developing countries like Ethiopia. The objective of this study was evaluating the dynamics of soil loss, quantifying sediment yield, and detecting soil erosion hotspot fields in the Boyo watershed. To quantify the soil erosion risks, the Revised Universal Soil Loss Equation (RUSLE) model was used combined with remote sensing (RS) and geographic information system (GIS) technology, with land use/land cover, rainfall, soil, and management approaches as input variables. The sediment yield was estimated using the sediment delivery ratio (SDR) method. In contrast to a loss in forest land (1.7 %), water bodies (3.0 %), wetlands (1.5 %), and grassland (1.7 %), the analysis of LULC change (1991-2020) showed a yearly increase in the area of cultivated land (1.4 %), built-up land (0.8 %), and bare land (3.5 %). In 1991, 2000, and 2020, respectively, the watershed's mean annual soil loss increases by 15.5, 35.9, and 38.3 t/ha/y. Approximately 36 cm of the watershed's economically productive topsoil was lost throughout the study's twenty-nine-year period (1991-2020). According to the degree of erosion, 16 % of the watershed was deemed seriously damaged, while 70 % was deemed slightly degraded. Additionally, it is estimated for the year 2020 that 74,147.25 t/ y of sediment (8.52 % of the total annual soil loss of 870,763.12 t) reach the Boyo watershed outlet. SW4 and SW5 were the two sub-watersheds with the highest erosion rates, requiring immediate conservation intervention to restore the ecology of the Boyo watershed.
The 2021 Navalacruz wildfire occurred in a mountainous area in the Sistema Central (Spain). Despite having an average low severity index (dNBR), the loss of vegetation cover associated with the fire was responsible for a high rate of sedimentation in the rivers and streams. Additionally, the burned area affected up to 60 cultural heritage sites, including archaeological and ethnological sites, and damage ranged from burnt pieces of wood to the burial of archaeological sites. In the present work, we document and analyze the post-fire evolution in several rivers and streams. This is based on a field survey of infiltration rates, hydrodynamic modeling, and the study of channel morphological changes. Our analysis revealed how the first post-fire rains caused the mobilization and transport of ashes. This created hydrophobicity in the soils, resulting in large amounts of materials being transported to rivers and streams by subsequent medium- and low-magnitude storms. A hydrological and hydraulic model of the study catchments under pre- and post-fire conditions suggests that these trends are a consequence of a post-fire increase in flow rates for similar rainfall scenarios. In this respect, our estimates point at a significant increase in sediment transport capacities associated with this post-fire increase in flow rates. The combination of locally steep slopes with high-severity fire patches, and a considerable regolith (derived from pre-fire weathering), resulted in a series of cascading responses, such as an exacerbated supply of sand to the drainage network and the triggering of debris flows, followed by erosion and entrenchment.