共检索到 5

Saturated hydraulic conductivity (Ks) is a critical parameter for assessing water-induced loess collapsibility, erosion, and landslides. However, accurately determining Ks has long been a challenge in geological and geotechnical engineering due to the complexity and inherent spatial variability of loess-paleosol sequences. To address this issue, this study conducted shaft sampling and laboratory experiments to measure the Ks of loess with a deposition time (T) of up to 880 ka. By leveraging the well-defined deposition time scale and global relevance of loess, a predictive model incorporating Ks variability was developed with T as a variable. This paper provides a detailed discussion of the physical significance of the model's parameters, their determination methods, and verifies its applicability. Pore distribution and scanning electron microscope (SEM) images were used to reveal the three-stage evolution of Ks over time, as well as the underlying microstructural mechanisms. Additionally, this paper explores the impact of commonly used merging layer methods on Ks variability in engineering practice. The model effectively captures the long-term evolution of Ks in loess and can predict the Ks of loess-paleosol sequences, along with their expected variability, at a lower cost. This provides more reliable parameters for geological hazard assessments and hydrological engineering design.

期刊论文 2025-09-01 DOI: 10.1016/j.catena.2025.109176 ISSN: 0341-8162

Mining leads to soil degradation and land subsidence, resulting in decreased soil quality. However, there are limited studies on the detailed effects of mining activities on soil properties, particularly in western aeolian sand. This study, therefore, quantitatively assessed the aeolian sandy soil disturbance induced by mining activities in the contiguous regions of Shanxi, Shaanxi, and Inner Mongolia. The following soil physical quality indices were measured in the pre (May 2015), mid (October 2015), and postmining period (April 2016), such as the soil water content (SWC), particle size (PS), soil penetration (SP), and soil saturated hydraulic conductivity (SSHC). The results showed that mining activities brought irreversible effects on soil structures. In the pre-mining period, land subsidence broke up large soil particles, destroying soil structure, leading to decreased PS (218.33 vs. 194.36 mu m), SP (4615.56 vs. 2631.95 kPa), and subsequently decreased SSHC (1.12 vs. 0.99 cm/min). Rainfall during the midmining period exacerbated this fragmentation. Thereafter, low temperatures and humidity caused the soil to freeze, allowing the small soil particles to merge into larger ones. Meanwhile, the natural re-sedimentation, subsidence, and heavy mechanical crushing in the post-mining period increased PS and SP. The SSHC hence increased to 1.21 cm/min. Furthermore, the evaluation of soil indices from different stress zones showed that the external pulling stress zone always had a higher SSHC than the neutral zone in any mining period, possibly due to the presence of large cracks and high SWC. This study contributes to the understanding of the impact of mining activities on soil physical qualities, providing a theoretical basis and quantitative guidance for the surface damage caused by coal mining in the aeolian sandy area in Western China.

期刊论文 2025-05-30 DOI: 10.1002/ldr.5553 ISSN: 1085-3278

Soil compaction has been found to deform soil structures and alter water flows. Although previous studies have suggested that a load exceeding the critical stress, determined by static load application, can be applied for a short duration without causing substantial damage to the soil structure, the immediate consequences of short loading times on structural integrity and the subsequent influence on soil water flow remain relatively underexplored. The principal objective of this research was to explore the effects of loading intervals, ranging from 0.1 to 2.5 s, commonly used by vehicles and machinery in the agricultural sector, on the changes in water-stable aggregates and saturated hydraulic conductivity (K-sat) associated with soil compaction, thereby enhancing our understanding of how transient external forces could affect the soil properties. Four distinct soils with varying soil organic matter (SOM) contents (13, 43, 77, and 123 g/kg) were collected from a typical Mollisol area in Northeast China, each characterized by different initial gravimetric soil water contents of 11%, 15%, 19%, and 24%, respectively. Under an applied load of 4.0 kg/cm(2), the short loading time resulted in an increase in small macroaggregates (SMAs) and a decrease in microaggregates within the distribution of water-stable aggregates, whereas it did not affect aggregate stability. K-sat decreased significantly (p < 0.05) as the loading time increased from 0.1 to 2.5 s. The effects of loading time and SOM on water-stable aggregates with particle sizes exceeding 0.25 mm, mean weight diameter, geometric mean diameter, and K-sat were identified as statistically significant or highly significant (p < 0.05 or p < 0.01). Notably, the initial soil water content remained unchanged during the short compaction period. A significant negative correlation was identified between SMAs and K-sat for each soil, with the loading time and initial soil water content (correlation coefficients ranging from -0.834 to -0.622). The results, combined with the structural equation modeling analysis, indicated that both a short loading time and SOM could directly increase SMA and decrease K-sat, with both factors influencing K-sat through SMA during the soil compaction process. This suggests that the loading time and SOM during a short duration under the same external force, rather than initial soil water content, can determine the potential degradation of the soil.

期刊论文 2025-03-01 DOI: 10.1002/ldr.5444 ISSN: 1085-3278

Featured Application The findings of this study establish the behavior of sanitary landfill cover materials, such as compacted clay and compacted polyurethane-clay, in unsaturated conditions under several wet-dry cycles, which would aid in predicting the performance of the material under varying environmental conditions. By predicting the unsaturated hydraulic conductivity and understanding the effects of environmental stresses, the findings can aid in the design and implementation of more durable and efficient landfill liners and covers.Abstract Sanitary landfill covers are exposed to varying environmental conditions; hence, the state of the clay layer also changes from saturated to unsaturated. The study aimed to predict the unsaturated hydraulic conductivity of the locally available compacted clay and clay with polyurethane to determine their behavior as they change from wet to dry using matric suction and empirical models proposed through other studies. The specimens underwent three wet-dry cycles wherein the matric suction was determined for several moisture content levels as the specimen dried using the filter paper method or ASTM D5298. The results showed that the factors affecting the soil structure, such as grain size difference between clay and polyurethane-clay, varying initial void ratios, and degradation of the soil structure due to the wet-dry cycles, did not affect the matric suction at the higher suction range; however, these factors had an effect at the lower suction range. The matric suction obtained was then used to establish the best fit water retention curve (WRC) or the relationship between the matric suction and moisture content. The WRC was used to predict the unsaturated hydraulic conductivity and observe the soil-water interaction. The study also observed that the predicted unsaturated hydraulic conductivity decreases as the compacted specimen moves to a drier state.

期刊论文 2025-03-01 DOI: 10.3390/app15052411

Runoff processes are essential to the hydrological cycle in mountainous areas. However, many aspects of surface and subsurface runoff generation mechanisms and their influencing factors remain to be fully understood. In this study, rainfall simulation experiments were conducted in micro runoff plots in different slope positions on a typical hillslope to explore runoff processes and their influencing factors in the Taihang Mountain region in northern China. The surface and subsurface runoff and soil water content (SWC) variation processes were analyzed. Moreover, the impact of the soil properties, such as soil saturated hydraulic conductivity (Ks), bulk density (BD), capillary porosity (CP), non-capillary porosity (NCP), and soil organic matter (SOM), on these processes were investigated. The results revealed that the response of the SWC to rainfall was significantly different in different soil layers and slope positions. The response time was slower and the period was longer on the lower slope. However, the middle and upper slopes had a faster response time and shorter period. The surface runoff was the dominant type in the lower slope (67.26 % of the total runoff), while the subsurface runoff was the dominant type in the middle (78.83 %) and upper (83.67 %) slopes. The subsurface runoff was mainly generated in the 40 cm layer on the lower slope, 20 and 30 cm layers on the middle slope, and 30 and 40 cm layers on the upper slope. These layers exhibited good correspondence with the Ks' vertical distribution, but were inconsistent with the other soil properties. These results indicate that the Ks was the most critical factor influencing the runoff generation process. The ratio of the upper layer's horizontal Ks to the lower layer's vertical Ks controlled the subsurface runoff generation process in the hillslope. These findings provide useful information for under-standing the hydrological processes in mountainous areas.

期刊论文 2024-01-01 DOI: 10.1016/j.scitotenv.2023.167372 ISSN: 0048-9697
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-5条  共5条,1页