Background . The paper is devoted to the analysis of vertical displacements based on remote sensing data as an identifier of hazardous engineering-geological processes in areas with underground infrastructure. The study was carried out on the example of the of the tunnel between Demiivska and Lybidska stations of the Kyiv subway. In December 2023, processes of uneven compaction and vibration creep of the soil massif around the tunnel lining were detected, and there was a risk of loss of stability of the tunnel structures and an emergency. Methods . This study employs the Differential Interferometric Synthetic Aperture Radar (D-InSAR) method which allows monitoring of soil surface deformations through phase change analysis among radar images. The correction procedures were applied to mitigate noise in processed images caused by temporal and geometric decorrelation, atmospheric disturbances, and other noise interferences. Correction and filtering method, specifically Canny and Sobel linear filters, were used to improve accuracy. Their application to processed satellite images enhances the contours of recorded vertical displacements and reduces geometric distortion noise, preserving the structural integrity of the images. According to our calculations, effective anomaly detection in images of urbanized areas requires a minimum threshold of 25 % in image contrast and clarity. The filters' application for highlighting significant intensity changes achieved a 28 % increase in clarity, indicating high processing effectiveness for further analysis of displacement maps and other parameters related to vertical shifts. Results . Abnormal zones of vertical displacements were identified within the study area based on vertical displacement data. During the 2022-2023 observation period, these zones shifted toward the metro tunnel axis. Vertical displacements directly above the area of subsidence near the 'Rozetka' store were detected during the fifth observation period, October-December 2023, coinciding with the tunnel closure for repairs. Overall, displacement values shifted from negative in 2022 to positive in 2023, suggesting that displacements may have served as an early indicator of underground structure deformation activation. The use of filters allowed for more precise identification of displacement dynamics and localization of deformation zones throughout the observation periods. In the final period, the anomalous zone aligned with the location of tunnel deformations and recorded surface subsidence. Conclusions . Using the example of the distillation tunnel section, we demonstrate the possibility of using the analysis of vertical surface displacements performed by D-InSAR together with a combination of Kenny and Sobel filters to track vertical surface displacements, which is important for monitoring the condition of underground facilities and preventing possible accidents. This study lays the foundation for further development of methodological approaches to the analysis of potential deformations of underground structures based on surface dynamics (vertical displacements). Further improvement of the methodology will help to ensure the accuracy and reliability of data in the context of monitoring underground structures.
The Karnak Temples complex, a monumental site dating back to approximately 1970 BC, faces significant preservation challenges due to a confluence of mechanical, environmental, and anthropogenic factors impacting its stone blocks. This study provides a comprehensive evaluation of the deterioration affecting the northeast corner of the complex, revealing that the primary forms of damage include split cracking and fracturing. Seismic activities have induced out-of-plane displacements, fractures, and chipping, while flooding has worsened structural instability through uplift and prolonged water exposure. Soil liquefaction and fluctuating groundwater levels have exacerbated the misalignment and embedding of stone blocks. Thermal stress and wind erosion have caused microstructural decay and surface degradation and contaminated water sources have led to salt weathering and chemical alterations. Multi-temporal satellite imagery has revealed the influence of vegetation, particularly invasive plant species, on physical and biochemical damage to the stone. This study utilized in situ assessments to document damage patterns and employed satellite imagery to assess environmental impacts, providing a multi-proxy approach to understanding the current state of the stone blocks. This analysis highlights the urgent need for a multi-faceted conservation strategy. Recommendations include constructing elevated platforms from durable materials to reduce soil and water contact, implementing non-invasive cleaning and consolidation techniques, and developing effective water management and contamination prevention measures. Restoration should focus on repairing severely affected blocks with historically accurate materials and establishing an open museum setting will enhance public engagement. Long-term preservation will benefit from regular monitoring using 3D scanning and a preventive conservation schedule. Future research should explore non-destructive testing and interdisciplinary collaboration to refine conservation strategies and ensure the sustained protection of this invaluable historical heritage.