共检索到 4

Cemented sandy gravel is often used to enhance the foundation soil of engineering projects. This paper presents results of triaxial tests on cemented sandy gravel specimens. We compared 8 cemented specimens and 4 uncemented specimens. The strength, dilatancy, and stiffness behavior of both cemented and uncemented specimens are compared. The strength of cemented specimens is significantly greater than that of uncemented specimens, and the cemented specimens demonstrate pronounced expansion characteristics. The peak friction angle of the cemented specimen shows a linear relationship with the confining pressure: psi = 68.1-18.2lg(sigma 3/pa). To quantify the structural strength of the cemented specimens, a structural damage parameter is introduced based on the differences in mechanical properties between the two materials. The structural damage parameter first increases and then decreases as shearing progresses, and a hump curve function is used to describe this behavior. In the frame of the generalized plasticity, a novel elastoplastic model is established, considering the structural parameter as a factor of the plastic modulus, loading vectors and plastic flow direction vectors. The calculated values fit well with the experimental results. The model can reflect the characteristics of cemented sandy gravel, in terms of stress softening, residual strength, and volumetric dilation. Finally, the model is used to evaluate the deformation of a sluice dam foundation after being enhanced with cemented sandy gravel. The results show that after treatment, both the settlement of the gate floor and the shear deformation of the waterstops can be reduced by more than 10%.

期刊论文 2025-05-01 DOI: 10.1007/s10064-025-04234-x ISSN: 1435-9529

The artificial ground freezing (AGF) method is a frequently-used reinforcement method for underground engineering that has a good effect on supporting and water-sealing. When employing the AGF method, the mesoscopic damage reduces the strength of the frozen sandy gravel and consequently affects the bearing capacity of the frozen curtain. However, a few studies have been conducted on the mesoscopic damage of artificial frozen sandy gravel, which differs from fine-grained soil due to its larger gravel size. Therefore, based on triaxial compression tests and CT scanning tests, this paper investigates both the mesoscopic damage mechanism and variations in artificial frozen sandy gravels. The findings indicate that there are contact pressures between gravel tips within the frozen sandy gravel, with damage primarily concentrated around these gravels during incompatible deformation within a four-phase medium consisting of ice, water, soil, and gravel. Furthermore, numerical simulation validates that failure typically initiates at delicate contact surfaces between gravel and soil particles. For instance, when the axial strain reaches 8%, the plastic strain at the location of gravel contact reaches 4.6, which significantly surpasses most of the surrounding plastic strain zones measuring around 1.3. Additionally, the maximum local stress within the soil sample is as high as 48 MPa. This failure event is distinct from viscoplastic failure observed in frozen fine-grained soil or brittle failure seen in frozen rock. The findings also indicate that the mesoscopic damage is about 0.3 when the axial strain is 10%. The study's findings can serve as a valuable guide for developing finite element models to assess damage caused by freezing in sandy gravel using AGF method.

期刊论文 2025-04-01 DOI: 10.1007/s10064-025-04183-5 ISSN: 1435-9529

Current research on soil-structure interface properties mainly focuses on sand, clay, and silt, with little attention given to sandy gravel. In order to study the effects of relative density and interface materials on the shear behavior of the sandy gravel-structure interface, a series of large-scale direct shear tests on sandy gravel were carried out, and stress-strain relationships, volume change curves, and shear strengths were investigated. The results show that the angle of internal friction of sandy gravel increases linearly with relative density (R2 is 0.998), from 43.0 degrees to 48.0 degrees when the relative density increases from 0.3 to 0.9. The growth trend of cohesion increases, the shear behavior transitions from strain hardening to strain softening, and the shear strength increases linearly with the increase in relative density. The interfacial shear strengths and interface adhesion of sandy gravel with steel and concrete interfaces increase linearly with relative density, and the shear curves are strain hardening. Furthermore, the interface friction angle of concrete increases linearly with relative density (R2 is 0.985), from 30.2 degrees to 34.2 degrees, while the interface friction angle of the steel interface remains relatively constant around 28.9 degrees. Finally, relative density was introduced into the Mohr-Coulomb shear strength formula, and the relationship equations of relative density and normal pressure with the shear strength and interfacial shear strength of sandy gravel were established. The validation results show that the error margin of the formula is within 4%. This formula can be used to evaluate changes in the mechanical properties of sandy gravel formations and the bearing capacity of pile foundations after they have been disturbed by factors such as construction.

期刊论文 2025-02-01 DOI: 10.3390/buildings15040546

The control of freezing temperatures throughout the artificial ground freezing (AGF) process is always difficult. An overly high temperature of the circulating refrigerant may lead to insufficient frozen soil strength, while an overly low temperature may cause unnecessary energy waste, and even excessive pore ice may damage the soil structure and reduce the frozen soil strength. What's more, overly freezing may damage buildings on the surface. Therefore, it is of great significance to study the optimum freezing temperature (OFT), which is very important for better and more energy-efficient employment of the AGF method. In this paper, we use uniaxial compression and direct shear tests to obtain dynamic mechanical parameters in the soil freezing process. After the analysis of varying mechanical parameters by the entropy weight TOPSIS principal component analysis method, the results show that the interval range of OFT for saturated and unsaturated sandy gravel is [- 10 degrees C, - 15 degrees C] and [- 15 degrees C, - 20 degrees C], respectively. The findings indicate that, in the AGF method, a lower temperature is not always preferable. According to the results, constructive measures to optimize the temperature field distribution in the AGF method are proposed. The research results will contribute to the assessment of the safety and efficiency of AGF projects.

期刊论文 2024-03-01 DOI: 10.1007/s12665-023-11411-2 ISSN: 1866-6280
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页