共检索到 2

At least 32 case histories have shown that liquefaction can occur in gravelly soils (both natural deposits and manmade reclamations) during severe earthquakes, causing large ground deformations and severe damage to civil infrastructures. Gravelly soils, however, pose major challenges in geotechnical earthquake engineering in terms of assessing their deformation characteristics and potential for liquefaction. In this study, aimed at providing valuable insights into this important topic, a series of isotropically consolidated undrained cyclic triaxial tests were carried out on selected sand-gravel mixtures (SGMs) with varying degrees of gravel content (Gc) and relative density (Dr). The pore water pressure generation and liquefaction resistance were examined and then further scrutinized using an energy-based method (EBM) for liquefaction assessment. It is shown that the rate of pore water pressure development is influenced by the cyclic resistance ratio (CSR), Gc and Dr of SGMs. However, a unique correlation exists between the pore water pressure ratio and cumulative normalized dissipated energy during liquefaction. Furthermore, the cumulative normalized energy is a promising parameter to describe the cyclic resistance ratio (CRR) of gravelly soils at various post-liquefaction axial strain levels, considering the combined effects of Gc and Dr on the liquefaction resistance.

期刊论文 2024-12-01 DOI: 10.3390/geotechnics4040065

Case histories from at least 28 earthquakes worldwide have indicated that liquefaction can occur in gravelly soils (both in natural deposits and manmade reclamations), inducing large ground deformation and causing severe damage to civil infrastructures. However, the evaluation of the liquefaction potential and cyclic strain accumulation characteristics of gravelly soils remains a major challenge in geotechnical earthquake engineering. To provide new and useful insights into this crucial topic, stress -controlled undrained cyclic triaxial tests were conducted on sand -gravel mixtures (SGM) having sand -dominated microstructure but different packing states (i.e., soil grain arrangement), which were obtained by varying the gravel content (GC) and relative density (Dr). The experimental results confirmed that both the GC and Dr have marginal (at low GC and Dr) to significant (at high GC and Dr) effects on the cyclic resistance ratio (CRR) of SGM, but highlighted the need to consider GC and Dr effects together. In this regard, the use of state parameters, such as the equivalent void ratio (ef(eq)) and equivalent relative density (Drf(eq)), were found to be suitable approaches to describe the combined effect of GC and Dr on CRR as they provide unique correlations for sand -dominated SGM irrespective of their packing states. (c) 2024 Production and hosting by Elsevier B.V. on behalf of The Japanese Geotechnical Society. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

期刊论文 2024-04-01 DOI: 10.1016/j.sandf.2024.101444 ISSN: 0038-0806
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页