共检索到 2

Concrete is widely used in civil engineering applications and the natural aggregates which used in concrete are scarce, but its demand is increasing. The disposal of rubber tyres poses a significant environmental challenge, as their decomposition releases harmful chemicals into the soil and water bodies over many years. Decomposition of tyres should be done in a smart way and hence came the emergence of mixing recycled rubber crumbs into concrete as Rubberised Concrete (RC). This paper provides an in-depth analysis of the mechanical properties of concrete such as Compressive Strength (fck), Tensile Strength (ft), Flexural Strength (fcr) of 7, 14, 28 days in replacement of fine aggregate with fine rubber (FR), and Coarse Aggregate with Coarse Rubber (CR). The results indicate that RC is more suitable for structural applications, including Reinforced Concrete columns, beams, slabs, than conventional concrete. The primary objective of the article is to explore the potential use of recycled rubber crumbs in concrete, referred to as Rubberised Concrete (RC), and to analyze its mechanical properties such as compressive strength, tensile strength, and flexural strength over different curing periods. Additionally, machine learning (ML) based prediction model has been developed for various strength characteristics of concrete mixtures at 28 days. The hyperparameter optimization using Grid Search CV with fivefold cross-validation have been performed to obtain the best hyperparameters. The model's performance is evaluated using metrics like MAE, MSE, RMSE, and R-squared values. Results reveal varying performances among different ML algorithms for predicting flexural, tensile, and compressive strengths.

期刊论文 2024-09-30 DOI: 10.1038/s41598-024-73504-7 ISSN: 2045-2322

The environmental impact of non-biodegradable rubber waste can be severe if they are buried in moist landfill soils or remain unused forever. This study deals with a sustainable approach for reusing discarded tires in construction materials. Replacing ordinary Portland cement (OPC) with an environmentally friendly geopolymer binder and integrating crumb rubber into pre-treated or non-treated geopolymer concrete as a partial replacement of natural aggregate is a great alternative to utilise tire waste and reduce CO2 emissions. Considering this, two sets of geopolymer concrete (GPC) mixes were manufactured, referred to as core mixes. Fine aggregates of the core geopolymer mixes were partially replaced with pre-treated and non-treated rubber crumbs to produce crumb rubber geopolymer concrete (CRGPC). The mechanical properties, such as compressive strength, stress-strain relationship, and elastic modulus of a rubberised geopolymer concrete of the reference GPC mix and the CRGPC were examined thoroughly to determine the performance of the products. Also, the mechanical properties of the CRGPC were compared with the existing material models. The result shows that the compressive strength and modulus of elasticity of CRGPC decrease with the increase of rubber content; for instance, a 33% reduction of the compressive strength is observed when 25% natural fine aggregate is replaced with crumb rubber. However, the strength and elasticity reduction can be minimised using pre-treated rubber particles. Based on the experimental results, stress-strain models for GPC and CRGPC are developed and proposed. The proposed models can accurately predict the properties of GPC and CRGPC.

期刊论文 2024-03-01 DOI: 10.3390/ma17051031
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页