Transversely isotropic rocks (TIRs) are widespread in geological formations, and understanding their mechanical behavior is crucial for geotechnical and geoengineering applications. This study presents the development of a novel analog material that reproduces the directional mechanical properties of TIRs. The material is composed of quartz sand, mica flakes, and gelatin in adjustable proportions, allowing control over strength and stiffness anisotropy. Uniaxial compressive strength (UCS) and direct shear tests were conducted to evaluate mechanical responses across different anisotropy angles. Results show that the analog material replicates key features of natural TIRs, including directional variations in strength and fracture modes. In UCS tests, the anisotropy angle (beta) governs the transition between tensile and shear failure. In direct shear tests, the orientation angle (alpha) significantly affects shear strength. Higher gelatin concentrations increase cohesion and Young's modulus without changing the internal friction angle, while mica content reduces overall strength and stiffness. Comparisons with published data on sedimentary and metamorphic rocks confirm the mechanical representativeness of the material. Its simplicity, tunability, and reproducibility make it a useful tool for scaled physical modeling of anisotropic rock behavior in the laboratory. This approach supports the experimental investigation of deformation and failure mechanisms in layered rock masses under controlled conditions.
In urban regions with karst developments, grouting is commonly utilized to fill cavities. However, the extent and control standards of grouting reinforcement are primarily determined through experience and field testing, which poses challenges in ensuring its effectiveness. Based on the instability mechanism of surrounding rocks in underwater karst shield tunnels, this study develops a mechanical model for analyzing the grouting reinforcement extent of such tunnels using strength theory. The reinforcement range for karst formations at various tunnel locations is clarified, and corresponding grouting reinforcement control standards are proposed based on cusp catastrophe theory. The findings indicate the following: the primary cause of surrounding rock instability in underwater karst shield tunnels is that the reduction in surrounding rock thickness during shield tunneling modifies the original constraints and boundary conditions and disrupts the initial equilibrium state. These changes influence the water content of the surrounding rocks and disturb the surrounding rock and soil mass, leading to surrounding rock instability. When grouting causes damage to the surrounding rocks between the karst and tunnel, the system is simplified into cantilever beam and plate models for analysis. It is determined that the grouting reinforcement extent is primarily influenced by factors such as karst size, properties of the karst filling material, and tunnel span. The total potential energy of the rock mass between the karst and tunnel is calculated, leading to the development of an instability and catastrophe model for the surrounding rocks. The proposed grouting reinforcement control standards are mainly dependent on factors such as the distance of the karst, characteristics of the reinforced surrounding rocks, shield machine support force, material properties post-reinforcement, and karst size.
During the excavation of large-scale rock slopes and deep hard rock engineering, the induced rapid unloading serves as the primary cause of rock mass deformation and failure. The essence of this phenomenon lies in the opening-shear failure process triggered by the normal stress unloading of fractured rock mass. In this study, we focus on local-scale rock fracture and conduct direct shear tests under different normal stress unloading rates on five types of non-persistent fractured hard rocks. The aim is to analyze the influence of normal stress unloading rates on the failure modes and shear mechanical characteristics of non-persistent fractured rocks. The results indicate that the normal unloading displacement decreases gradually with increasing normal stress unloading rate, while the influence of normal stress unloading rate on shear displacement is not significant. As the normal stress unloading rate increases, the rocks brittle failure process accelerates, and the degree of rocks damage decreases. Analysis of the stress state on rock fracture surfaces reveals that increasing the normal stress unloading rate enhances the compressive stress on rocks, leading to a transition in the failure mode from shear failure to tensile failure. A negative exponential strength formula was proposed, which effectively fits the relationship between failure normal stress and normal stress unloading rate. The findings enrich the theoretical foundation of unloading rock mechanics and provide theoretical support for disasters prevention and control in rock engineering excavations. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).
A novel discrete element method (DEM) model is proposed to better reproduce the behaviour of porous soft rocks. With the final goal of simulating pile penetration problems efficiency and scalability are two underlining features. The contact model is based on the macro-element theory and employs damage laws to govern the plastic deformations developing at the microscale. To attain (i) high porosity states, (ii) represent irregular shaped grains and (iii) incorporate the physical presence of bond fragments, the model is cast within a far-field interaction framework allowing for non-overlapping particles to transmit forces. After presenting a calibration procedure, the model is used to replicate the behaviour of Maastricht calcarenite. In particular, the mechanical response of this calcarenite is explored within the critical state theory framework. Finally, the efficiency, performance and scalability of the model is tested by simulating physical model experiments of cone-ended penetration tests in Maastricht calcarenite from the literature. To boost efficiency of the 3D numerical simulations, a coupled DEM-FDM (Finite Differential Method) framework is used. The good fit between the experimental and numerical results suggest that the new model can be used to unveil microscopic mechanism controlling the macroscopic response of soft-rock/structure interaction problems.
This study presents a fully coupled thermo-hydro-mechanical (THM) constitutive model for clay rocks. The model is formulated within the elastic-viscoplasticity framework, which considers nonlinearity and softening after peak strength, anisotropy of stiffness and strength, as well as permeability variation due to damage. In addition, the mechanical properties are coupled with thermal phenomena and accumulated plastic strains. The adopted nonlocal and viscoplastic approaches enhance numerical efficiency and provide the possibility to simulate localization phenomena. The model is validated against experimental data from laboratory tests conducted on Callovo-Oxfordian (COx) claystone samples that are initially unsaturated and under suction. The tests include a thermal phase where the COx specimens are subjected to different temperature increases. A good agreement with experimental data is obtained. In addition, parametric analyses are carried out to investigate the influence of the hydraulic boundary conditions (B.C.) and post-failure behavior models on the THM behavior evolution. It is shown that different drainage conditions affect the thermally induced pore pressures that, in turn, influence the onset of softening. The constitutive model presented constitutes a promising approach for simulating the most important features of the THM behavior of clay rocks. It is a tool with a high potential for application to several relevant case studies, such as thermal fracturing analysis of nuclear waste disposal systems. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Large-scale and heavily jointed rocks have inherent planes of anisotropy and secondary structural planes, such as dominant joint sets and random fractures, which result in significant differences in their failure mechanism and deformation behavior compared to other rock types. To address this issue, inherent anisotropic rocks with large-scale and dense joints are considered to be composed of the rock matrix, inherent planes of anisotropy, and secondary structural planes. Then a new implicit continuum model called LayerDFN is developed based on the crack tensor and damage tensor theories to characterize the mechanical properties of inherent anisotropic rocks. Furthermore, the LayerDFN model is implemented in the FLAC3D software, and a series of numerical results for typical example problems is compared with those obtained from the 3DEC, the analytical solutions, similar classical models, laboratory uniaxial compression tests, and field rigid bearing plate tests. The results demonstrate that the LayerDFN model can effectively capture the anisotropic mechanical properties of inherent anisotropic rocks, and can quantitatively characterize the damaging effect of the secondary structural planes. Overall, the numerical method based on the LayerDFN model provides a comprehensive and reliable approach for describing and analyzing the behavior of inherent anisotropic rocks, which will provide valuable insights for engineering design and decision-making processes. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).
Wellbore breakout is one of the critical issues in drilling due to the fact that the related problems result in additional costs and impact the drilling scheme severely. However, the majority of such wellbore breakout analyses were based on continuum mechanics. In addition to failure in intact rocks, wellbore breakouts can also be initiated along natural discontinuities, e.g. weak planes and fractures. Furthermore, the conventional models in wellbore breakouts with uniform distribution fractures could not reflect the real drilling situation. This paper presents a fully coupled hydro-mechanical model of the SB-X well in the Tarim Basin, China for evaluating wellbore breakouts in heavily fractured rocks under anisotropic stress states using the distinct element method (DEM) and the discrete fracture network (DFN). The developed model was validated against caliper log measurement, and its stability study was carried out by stress and displacement analyses. A parametric study was performed to investigate the effects of the characteristics of fracture distribution (orientation and length) on borehole stability by sensitivity studies. Simulation results demonstrate that the increase of the standard deviation of orientation when the fracture direction aligns parallel or perpendicular to the principal stress direction aggravates borehole instability. Moreover, an elevation in the average fracture length causes the borehole failure to change from the direction of the minimum in-situ horizontal principal stress (i.e. the direction of wellbore breakouts) towards alternative directions, ultimately leading to the whole wellbore failure. These findings provide theoretical insights for predicting wellbore breakouts in heavily fractured rocks. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).
Backfill is often employed in mining operations for ground support, with its positive impact on ground stability acknowledged in many underground mines. However, existing studies have predominantly focused only on the stress development within the backfill material, leaving the influence of stope backfilling on stress distribution in surrounding rock mass and ground stability largely unexplored. Therefore, this paper presents numerical models in FLAC3D to investigate, for the first time, the timedependent stress redistribution around a vertical backfilled stope and its implications on ground stability, considering the creep of surrounding rock mass. Using the Soft Soil constitutive model, the compressibility of backfill under large pressure was captured. It is found that the creep deformation of rock mass exercises compression on backfill and results in a less void ratio and increased modulus for fill material. The compacted backfill conversely influenced the stress distribution and ground stability of rock mass which was a combined effect of wall creep and compressibility of backfill. With the increase of time or/and creep deformation, the minimum principal stress in the rocks surrounding the backfilled stope increased towards the pre-mining stress state, while the deviatoric stress reduces leading to an increased factor of safety and improved ground stability. This improvement effect of backfill on ground stability increased with the increase of mine depth and stope height, while it is also more pronounced for the narrow stope, the backfill with a smaller compression index, and the soft rocks with a smaller viscosity coefficient. Furthermore, the results emphasize the importance of minimizing empty time and backfilling extracted stope as soon as possible for ground control. Reduction of filling gap height enhances the local stability around the roof of stope. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).
The internal microstructures of rock materials, including mineral heterogeneity and intrinsic microdefects, exert a significant influence on their nonlinear mechanical and cracking behaviors. It is of great significance to accurately characterize the actual microstructures and their influence on stress and damage evolution inside the rocks. In this study, an image-based fast Fourier transform (FFT) method is developed for reconstructing the actual rock microstructures by combining it with the digital image processing (DIP) technique. A series of experimental investigations were conducted to acquire information regarding the actual microstructure and the mechanical properties. Based on these experimental evidences, the processed microstructure information, in conjunction with the proposed micromechanical model, is incorporated into the numerical calculation. The proposed image-based FFT method was firstly validated through uniaxial compression tests. Subsequently, it was employed to predict and analyze the influence of microstructure on macroscopic mechanical behaviors, local stress distribution and the internal crack evolution process in brittle rocks. The distribution of feldspar is considerably more heterogeneous and scattered than that of quartz, which results in a greater propensity for the formation of cracks in feldspar. It is observed that initial cracks and new cracks, including intragranular and boundary ones, ultimately coalesce and connect as the primary through cracks, which are predominantly distributed along the boundary of the feldspar. This phenomenon is also predicted by the proposed numerical method. The results indicate that the proposed numerical method provides an effective approach for analyzing, understanding and predicting the nonlinear mechanical and cracking behaviors of brittle rocks by taking into account the actual microstructure characteristics. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).
This work is devoted to numerical analysis of thermo-hydromechanical problem and cracking process in saturated porous media in the context of deep geological disposal of radioactive waste. The fundamental background of thermo-poro-elastoplasticity theory is first summarized. The emphasis is put on the effect of pore fluid pressure on plastic deformation. A micromechanics-based elastoplastic model is then presented for a class of clayey rocks considered as host rock. Based on linear and nonlinear homogenization techniques, the proposed model is able to systematically account for the influences of porosity and mineral composition on macroscopic elastic properties and plastic yield strength. The initial anisotropy and time-dependent deformation are also taken into account. The induced cracking process is described by using a non-local damage model. A specific hybrid formulation is proposed, able to conveniently capture tensile, shear and mixed cracks. In particular, the influences of pore pressure and confining stress on the shear cracking mechanism are taken into account. The proposed model is applied to investigating thermo-hydromechanical responses and induced damage evolution in laboratory tests at the sample scale. In the last part, an in situ heating experiment is analyzed by using the proposed model. Numerical results are compared with experimental data and field measurements in terms of temperature variation, pore fluid pressure change and induced damaged zone. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).