共检索到 3

Excavated rock and soil from tunnelling (ERST), fly ash (FA), and slag are one of the largest sources of solid waste and play an important role in reducing dependence on natural resources and solving the problem of solid waste accumulation. This study verifies the feasibility of highperformance ecological geopolymer concrete (HPEGC) incorporating ERST, FA and slag for engineering applications. The effects of different binding material to machine-made sand ratio (BMMSR) and SN/FS (the total mass of sodium silicate and NaOH solids to the total mass of the powdered raw material) on the slump, compressive strength, tensile strength, drying shrinkage, salt corrosion resistance of concrete and the microstructural deterioration process before and after salt corrosion were analysed by indoor tests and microscopic tests. The results showed that the hydration products generated at SN/FS of 10, 12, and 15 % could effectively fill the pores of HPEGC and improve the pore structure and interfacial properties of HPEGC by microminiaturisation of the pore size. HPEGC formed a dense three-dimensional reticulated polysilicaaluminate-like structure due to the coexistence of C-S-H gel, C-A-S-H gel, N-A-S-H amorphous gel, and Na2Al2Si3O10. 2 Al 2 Si 3 O 10 . HPEGC with SN/FS of 12 % and BMMSR of 0.36 showed 29.5 % and 18.9 % improvement in compressive and tensile strengths, better resistance to sulfate attack, and 4.5 % and 45 % reduction in economic cost and GHG emission, respectively, compared with ordinary Portland cement concrete (OPCC). The results of the study proved that the engineering application of HPEGC incorporating ERST, FA and slag as raw materials is promising, providing new solutions for global underground excavation materials and industrial solid waste, and effectively promoting the sustainable development of the construction industry.

期刊论文 2024-10-15 DOI: 10.1016/j.jobe.2024.110351

The seepage effect of rock and soil in the process of encountering water follows a nonlinear coupling law between water and rock. According to the permeability of rock and soil during softening with water, changes in particles in rock and soil are related to permeability mechanisms. Based on the assumption of connection between particles in rock and soil, changes in particles before and after water infiltration, the mechanism of water-rock interaction, and the damage to rock and soil are analyzed herein. Combined with fractal theory and percolation theory, the random failure characteristics and nonlinear behavior of water in rock and soil are studied. At the same time, with the help of Fluent 17.0 software, the seepage process of rock samples in water is numerically simulated and analyzed. Taking the permeability coefficient of rock samples, the mass flow rate of water, and the internal pore water pressure of rock samples as tracking objects, it is found that there are obvious nonlinear characteristics in the process of water-rock interaction. The seepage-stress coupling between water and rock forms negative resistance to water seepage. The water infiltration is a slow and then accelerated process and tends to be stable. Research has shown that the coupling effect of seepage between water and rock increases the damage inside the rock and soil, and its permeability fluctuates randomly at different time steps. This feature is a common manifestation of fractal properties and percolation within rock and soil particles. At the same time, there is a non-equilibrium variation law of pore water pressure inside the rock and soil. This leads to a continuous strengthening of the seepage effect, reaching a stable state. The results of this study are crucial. It not only reveals the mechanism of interaction between water and rock but also correlates the degree of internal damage in rock and soil based on the seepage characteristics between water and rock. The conclusions can provide some reference value for relevant construction methods in the analysis of the formation of water flow characteristics, the prevention of rock slope seepage disasters, and the control of water inrush in tunnel excavation.

期刊论文 2024-04-01 DOI: 10.3390/pr12040828

The traditional rock and soil frost heave deformation characteristics analysis test is time-consuming and expensive. Therefore, an experimental study method of rock and soil frost heave deformation characteristics based on the pore distribution model is proposed. The pore distribution model was constructed to calculate the stress intensity factor formed by the point force and the distributed gravity, and then the frost heave displacement was obtained, and the frost heave deformation characteristics were analysed. The test results show that the running time of this study is saved by at least 2 min, and the average test cost is 14,951 million Yuan. Through the results of soil strain energy release rate and soil moisture content obtained, the effectiveness of the frost heave deformation characteristic test of rock and soil is fully verified.

期刊论文 2024-01-01 DOI: 10.1504/IJESMS.2024.138295 ISSN: 1755-9758
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页