共检索到 2

The vadose zone acts as a natural buffer that prevents contaminants such as arsenic (As) from contaminating groundwater resources. Despite its capability to retain As, our previous studies revealed that a substantial amount of As could be remobilized from soil under repeated wet-dry conditions. Overlooking this might underestimate the potential risk of groundwater contamination. This study quantified the remobilization of As in the vadose zone and developed a prediction model based on soil properties. 22 unsaturated soil columns were used to simulate vadose zones with varying soil properties. Repeated wet-dry cycles were conducted upon the As-retaining soil columns. Consequently, 13.9-150.6 mg/kg of As was remobilized from the columns, which corresponds to 37.0-74.6 % of initially retained As. From the experimental results, a machine learning model using a random forest algorithm was established to predict the potential for As remobilization based on readily accessible soil properties, including organic matter (OM) content, iron (Fe) content, uniformity coefficient, D30, and bulk density. Shapley additive explanation analyses revealed the interrelated effects of multiple soil prop-erties. D30, which is inter-related with Fe content, exhibited the highest contribution to As remobilization, fol-lowed by OM content, which was partially mediated by bulk density.

期刊论文 2025-08-05 DOI: 10.1016/j.jhazmat.2025.138400 ISSN: 0304-3894

Resource storage is a critical component of plant life history. While the storage of nonstructural carbohydrates in wood has been studied extensively, the multiple functions of mineral nutrient storage have received much less attention. Here, we highlight the size of wood nutrient pools, a primary determinant of whole-plant nutrient use efficiency, and a substantial fraction of ecosystem nutrient budgets, particularly tropical forests. Wood nutrient concentrations also show exceptional interspecific variation, even among co-occurring plant species, yet how they align with other plant functional traits and fit into existing trait economic spectra is unclear. We review the chemical forms and location of nutrient pools in bark and sapwood, and the evidence that nutrient remobilization from sapwood is associated with mast reproduction, seasonal leaf flush, and the capacity to resprout following damage. We also emphasize the role wood nutrients are likely to play in determining decomposition rates. Given the magnitude of wood nutrient stocks, and the importance of tissue stoichiometry to forest productivity, a key unresolved question is whether investment in wood nutrients is a relatively fixed trait, or conversely whether under global change plants will adjust nutrient allocation to wood depending on carbon gain and nutrient supply.

期刊论文 2024-12-01 DOI: 10.1111/nph.20193 ISSN: 0028-646X
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页