共检索到 55

Aerosols can alter atmospheric stability through radiative forcing, thereby changing mean and daily extreme precipitation on regional scales. However, it is unclear how extreme sub-daily precipitation responds to aerosol radiative effects. In this study, we use the regional climate model (RCM) Consortium for Small-scale Modeling (COSMO) to perform convection-permitting climate simulations at a kilometer-scale (0.04 degrees/similar to 4.4 km) resolution for the period 2001-2010. By evaluating against the observed hourly precipitation-gauge data, the COSMO model with explicit deep convection can effectively reproduce sub-daily and daily extreme precipitation events, as well as diurnal cycles of summer mean precipitation and wet hour frequency. Moreover, aerosol sensitivity simulations are conducted with sulfate and black carbon aerosol perturbations to assess the direct and semi-direct aerosol effects on extreme sub-daily precipitation in the COSMO model. The destabilizing effects associated with decreased sulfate aerosols intensify extreme sub-daily precipitation, while increased sulfate aerosols tend to induce an opposite change. In contrast, the response of extreme sub-daily precipitation to black carbon aerosol perturbations exhibits a nonlinear behavior and potentially relies on geographical location. Overall, the scaling rates of extreme precipitation intensities decrease and approach the Clausius-Clapeyron rate from hourly to daily time scales, and the responses to sulfate and black carbon aerosols vary with precipitation durations. This study improves the understanding of aerosol radiative effects on sub-daily extreme precipitation events in RCMs.

期刊论文 2024-12-01 DOI: 10.1088/1748-9326/ad9294 ISSN: 1748-9326

Aviation emissions contribute to climate change and local air pollution, with important contributions from non-CO2 emissions. These exhibit diverse impacts on atmospheric chemistry and radiative forcing (RF), varying with location, altitude, and time. Assessments of local mitigation strategies with global emission metrics may overlook this variability, but detailed studies of aviation emissions in areas smaller than continents are scarce. Integrating the AviTeam emission model and OsloCTM3, we quantify CO2, NOx, BC, OC, and SOx emissions, tropospheric concentration changes, RF, region-specific metrics, and assess alternative fuels for Norwegian domestic aviation. Mitigation potentials fora fuel switch to LH2 differ by up to 3.1 x 108 kgCO2-equivalents (GWP20) when using region-specific compared to global metrics. These differences result from a lower, region- specific contribution of non-CO2 emissions, particularly related to NOx. This study underscores the importance of accounting for non-CO2 variability in regional assessments, whether through region-specific metrics or advanced atmospheric modelling techniques.

期刊论文 2024-12-01 DOI: 10.1016/j.aeaoa.2024.100301

Light-absorbing carbonaceous aerosols that dominate atmospheric aerosol warming over India remain poorly characterized. Here, we delve into UV-visible-IR spectral aerosol absorption properties at nine PAN-India COALESCE network sites (Venkataraman et al., 2020, ). Absorption properties were estimated from aerosol-laden polytetrafluoroethylene filters using a well-constrained technique incorporating filter-to-particle correction factors. The measurements revealed spatiotemporal heterogeneity in spectral intrinsic and extrinsic absorption properties. Absorption analysis at near-UV wavelengths from carbonaceous aerosols at these regional sites revealed large near-ultraviolet brown carbon absorption contributions from 21% to 68%-emphasizing the need to include these particles in climate models. Further, satellite-retrieved column-integrated absorption was dominated by surface absorption, which opens possibilities of using satellite measurements to model surface-layer optical properties (limited to specific sites) at a higher spatial resolution. Both the satellite-modeled and direct in-situ absorption measurements can aid in validating and constraining climate modeling efforts that suffer from absorption underestimations and high uncertainties in radiative forcing estimates. Particulate pollution in the atmosphere scatter and absorb incoming solar energy, thus cooling or warming Earth's atmosphere. In developing countries and especially in India, one of the most polluted regions of the world, the extent to which particles can absorb solar energy and warm the atmosphere is not well understood. Here, for the first time, we measure particle absorption simultaneously at nine ground sites across India, in diverse geographical regions with different levels and types of particulate pollution. We find that organic carbon particles exert large absorption at near-ultraviolet wavelengths, which contain significant solar energy. These light absorbing organic carbon particles, called brown carbon, are emitted in large quantities from biomass burning (e.g., burning crop residue and cooking on wood-fired stoves). Comparing ground measurements of absorption with satellite-retrieved measurements that are representative of the entire atmospheric column, we find that near-surface atmospheric particles can exert significant warming. This study highlights the need to improve climate model simulations of particulate pollution's impact on the climate by incorporating spatiotemporal surface-level absorption measurements, including absorption by brown carbon particles. Measurements at nine regional PAN-India sites reveal several regions with large aerosol absorption strength Brown carbon contributes significantly (21%-68%) to near-ultraviolet absorption, indicating its importance in shortwave light absorption Strong correlations observed between satellite data and surface absorption indicate future potential in modeling surface absorption

期刊论文 2024-09-28 DOI: 10.1029/2024GL110089 ISSN: 0094-8276

A comprehensive global investigation on the impact of reduction (changes) in aerosol emissions due to Coronavirus disease-2019 (COVID-19) lockdowns on aerosol single scattering albedo (SSA) utilizing satellite observations and model simulations is conducted for the first time. The absolute change in Ozone Monitoring Instrument (OMI) retrieved, and two highly-spatially resolved models (Modern-Era Retrospective Analysis for Research and Applications-2 (MERRA-2) and Copernicus Atmosphere Monitoring Service (CAMS)) simulated SSA is <4% (<0.04-0.05) globally during COVID (2020) compared to normal (2015-2019) period. Change in SSA during COVID is not significantly different from long-term and year-to-year variability in SSA. A small change in SSA indicates that significant reduction in anthropogenic aerosol emissions during COVID-19 induced lockdowns has a negligible effect in changing the net contribution of aerosol scattering and/or absorption to total aerosol extinction. The changes in species-wise aerosol optical depth (AOD) are examined in detail to explain the observed changes in SSA. Model simulations show that total AOD decreased during COVID-19 lockdowns, consistent with satellite observations. The respective contributions of sulfate and black carbon (BC) to total AOD increased, which resulted in a negligible change in SSA during the spring and summer seasons of COVID over South Asia. Europe and North America experience a small increase in SSA (<2%) during the summer season of COVID due to a decrease in BC contribution. The change in SSA (2%) is the same for a small change in BC AOD contribution (3%), and for a significant change in sulfate AOD contribution (20%) to total AOD. Since, BC SSA is 5-times lower (higher absorption) than that of sulfate SSA, the change in SSA remains the same. For a significant change in SSA to occur, the BC AOD contribution needs to be changed significantly (4-5 times) compared to other aerosol species. A sensitivity analysis reveals that change in aerosol radiative forcing during COVID is primarily dependent on change in AOD rather than SSA. These quantitative findings can be useful to devise more suitable future global and regional mitigation strategies aimed at regulating aerosol emissions to reduce environmental impacts, air pollution, and public health risks.

期刊论文 2024-09-15 DOI: 10.1016/j.atmosenv.2024.120649 ISSN: 1352-2310

Recent research on the Himalayan cryosphere has increasingly been focused on climate uncertainty and regional variations, considering features such as glacier recession, lake expansion, outburst floods, and regional hazards. The Bhilangana river basin, located in the central Himalayas, is predominantly characterized by increased elevation-dependent warming and declining seasonal precipitation. Our study shows that high-elevation temperature increased from 2000 to 2022 (0.05(degrees)C/year, p = 20 m/sec). Quantification of the regional hazard reveals potentially severe downstream challenges for low-to-medium-scale hydropower stations, local settlements, and road and railway bridges near Devling and Ghuttu villages.

期刊论文 2024-08-01 DOI: http://dx.doi.org/10.1007/s11069-024-06415-5 ISSN: 0921-030X

Poverty and income inequality are problems faced by many countries including China. Since the implementation of Targeted Poverty Alleviation (TPA), absolute poverty has been eradicated, meanwhile, Chinese rural residents' income and inequality have experienced unprecedented new dynamics, but still, very few studies have focused on them. Hence, we attempt to examine the new trends in Chinese farmers' income inequality and to understand its causes during this period. We observe that China's urban-rural income ratio has been shrinking and the urban-rural inequality has been decreasing from 2014 to 2021. The reduction in the Theil index indicates a decrease in the regional inequality of farmers' income as well, and the decline in inter-regional inequality among eight economic zones contributes about 80% to increased equality. These new trends are caused by the fact that, with the TPA, the incomes of rural residents especially that in destitute areas, grew faster than that of urban residents and farmers in prosperous areas. The higher share of non-agricultural industry and agricultural mechanization level have significant positive impact on regional equality of farmers' income, while urban-rural dual structure has significant negative inhibitory effects. The lowest farmers' income and the highest inequality in the Northwest, and the slowest growth in the Northeast deserve more attention in rural Revitalization. From these findings, we propose four policy implications that would be applied to improve Chinese farmers' income equality, govern relative poverty, and achieve common prosperity in the post-poverty era.

期刊论文 2024-08-01 DOI: http://dx.doi.org/10.1016/j.rcar.2024.09.002 ISSN: 2097-1583

BackgroundAntarctica and its unique biodiversity are increasingly at risk from the effects of global climate change and other human influences. A significant recent element underpinning strategies for Antarctic conservation has been the development of a system of Antarctic Conservation Biogeographic Regions (ACBRs). The datasets supporting this classification are, however, dominated by eukaryotic taxa, with contributions from the bacterial domain restricted to Actinomycetota and Cyanobacteriota. Nevertheless, the ice-free areas of the Antarctic continent and the sub-Antarctic islands are dominated in terms of diversity by bacteria. Our study aims to generate a comprehensive phylogenetic dataset of Antarctic bacteria with wide geographical coverage on the continent and sub-Antarctic islands, to investigate whether bacterial diversity and distribution is reflected in the current ACBRs.ResultsSoil bacterial diversity and community composition did not fully conform with the ACBR classification. Although 19% of the variability was explained by this classification, the largest differences in bacterial community composition were between the broader continental and maritime Antarctic regions, where a degree of structural overlapping within continental and maritime bacterial communities was apparent, not fully reflecting the division into separate ACBRs. Strong divergence in soil bacterial community composition was also apparent between the Antarctic/sub-Antarctic islands and the Antarctic mainland. Bacterial communities were partially shaped by bioclimatic conditions, with 28% of dominant genera showing habitat preferences connected to at least one of the bioclimatic variables included in our analyses. These genera were also reported as indicator taxa for the ACBRs.ConclusionsOverall, our data indicate that the current ACBR subdivision of the Antarctic continent does not fully reflect bacterial distribution and diversity in Antarctica. We observed considerable overlap in the structure of soil bacterial communities within the maritime Antarctic region and within the continental Antarctic region. Our results also suggest that bacterial communities might be impacted by regional climatic and other environmental changes. The dataset developed in this study provides a comprehensive baseline that will provide a valuable tool for biodiversity conservation efforts on the continent. Further studies are clearly required, and we emphasize the need for more extensive campaigns to systematically sample and characterize Antarctic and sub-Antarctic soil microbial communities.APsmQ8MphSAgg4BzZyqdNTVideo AbstractConclusionsOverall, our data indicate that the current ACBR subdivision of the Antarctic continent does not fully reflect bacterial distribution and diversity in Antarctica. We observed considerable overlap in the structure of soil bacterial communities within the maritime Antarctic region and within the continental Antarctic region. Our results also suggest that bacterial communities might be impacted by regional climatic and other environmental changes. The dataset developed in this study provides a comprehensive baseline that will provide a valuable tool for biodiversity conservation efforts on the continent. Further studies are clearly required, and we emphasize the need for more extensive campaigns to systematically sample and characterize Antarctic and sub-Antarctic soil microbial communities.APsmQ8MphSAgg4BzZyqdNTVideo Abstract

期刊论文 2024-01-12 DOI: 10.1186/s40168-023-01719-3 ISSN: 2049-2618

We analyse the long-term (1980-2020) changes in aerosols over the Third Pole (TP) and assess the changes in radiative forcing (RF) using satellite, ground-based and reanalysis data. The annual mean aerosol optical depth (AOD) varies from 0.06 to 0.24, with the highest values of around 0.2 in the north and southwest TP, which are dominated by dust from Taklimakan and Thar deserts, respectively. However, Organic Carbon (OC), Black Carbon (BC) and sulphate aerosols have significant contributions to the total AOD in the south and east TP. High amounts of dust are observed in spring and summer, but BC in winter. Trajectory analysis reveals that the air mass originated from East and South Asia carries BC and OC, whereas the air from South Asia, Central Asia and Middle East brings dust to TP. Significant positive trends in AOD is found in TP, with high values of about 0.002/ yr in the eastern and southern TP. There is a gradual increase in BC and OC concentrations during 1980-2020, but the change from 2000 is phenomenal. The RF at the top of the atmosphere varies from -10 to 2 W/m2 in TP, and high positive RF of about 2 W/m2 is estimated in Pamir, Karakoram and Nyainquentanglha mountains, where the massive glacier mass exists. The RF has increased in much of TP during recent decades (2001-2020) with respect to previous decades (1981-2000), which can be due to the rise in BC and dust during the latter period. Therefore, the positive trend in BC and its associated change in RF can amplify the regional warming, and thus, the melting of glaciers or ice in TP. This is a great concern as it is directly connected to the water security of many South Asian countries.

期刊论文 2023-12-01 DOI: 10.1016/j.envres.2023.117105 ISSN: 0013-9351

Aerosol mixtures, which are still unclear in current knowledge, may cause large uncertainties in aerosol climate effect assessments. To better understand this research gap, a well-developed online coupled regional climate-chemistry model is employed here to investigate the influences of different aerosol mixing states on the direct interactions between aerosols and the East Asian summer monsoon (EASM). The results show that anthropogenic aerosols have high-level loadings with heterogeneous spatial distributions in East Asia. Black carbon aerosol loading accounts for more than 13% of the totals in this region in summer. Thus, different aerosol mixing states cause very different aerosol single scattering albedos, with a variation of 0.27 in East Asia in summer. Consequently, the sign of the aerosol instantaneous direct radiative forcing at the top of the atmosphere is changed, varying from - 0.95 to + 1.50 W/m(2) with increasing internal mixing aerosols. The influence of aerosol mixtures on regional climate responses seems to be weaker. The EASM circulation can be enhanced due to the warming effect of anthropogenic aerosols in the lower atmosphere, which further induces considerable aerosol accumulation associated with dynamic field anomaly, decrease in rainfall and so on, despite aerosol mixtures. However, this interaction between aerosols and the EASM will become more obvious if the aerosols are more mixed internally. Additionally, the differences in aerosol-induced EASM anomalies during the strongest and weakest monsoon index years are highly determined by the aerosol mixing states. The results here may further help us better address the environmental and climate change issues in East Asia.

期刊论文 2023-08-01 DOI: 10.1007/s00382-022-06617-2 ISSN: 0930-7575

Aerosol-cloud interactions, also known as aerosol indirect effect (AIE), substantially impact rainfall frequency and intensity. Here, we analyze NEX-GDDP, a multimodel ensemble of high-resolution (0.25 degrees) historical simulations and future projections statistically downscaled from 21 CMIP5 models, to quantify the importance of AIE on extreme climate indices, specifically consecutive dry days (CDD), consecutive wet days (CWD), and simple daily intensity index (SDII). The 21 NEX-GDDP CMIP5 models are classified into models with reliable (REM) and unreliable (UREM) monsoon climate simulated over India based on their simulations of the climate indices. The REM group is further decomposed based on whether the models represent only the direct (REMADE) or the direct and indirect (REMALL) aerosol effects. Compared to REMADE, including all aerosol effects significantly improves the model skills in simulating the observed historical trends of all three climate indices over India. Specifically, AIE enhances dry days and reduces wet days in India in the historical period, consistent with the observed changes. However, by the middle and end of the 21st century, there is a relative decrease in dry days and an increase in wet days and precipitation intensity. Moreover, the REMALL simulated future CWD and CDD changes are mostly opposite to those in REMADE, indicating the substantial role of AIE in the future projection of dry and wet climates. These findings underscore the crucial role of AIE in future projections of the Indian hydroclimate and motivate efforts to accurately represent AIE in climate models. We investigate the impacts of aerosol on India's wet and dry climate. High-resolution downscaled CMIP5 models were used to calculate extreme indices like CDD (consecutive dry days), CWD (consecutive wet days), SDII (precipitation intensity). From the group of 22 models, 12 reliable models were chosen based on their fidelity to the observations. Amongst the reliable models, certain models incorporate only aerosol-radiation interaction (REMADE), while others have both aerosol-radiation and aerosol-cloud interaction (REMALL). We found that the simulated trends in the REMAll were similar to the observed trends. In the current period (1975-2005), the aerosol-cloud interactions led to the reduction in rainfall (both frequency and intensity wise) and enhanced the dry days, however in the future projections, the reduction in aerosol emissions leads to a wetter climate (increase in wet days and rainfall intensity) over India.

期刊论文 2023-08-01 DOI: 10.1029/2022EF003266
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 末页
  • 跳转
当前展示1-10条  共55条,6页