The escalating environmental challenges posed by waste rubber tyres (WRTs) necessitate innovative solutions to address their detrimental effects on the geoenvironment. Thus, the knowledge about the recent advancements in material recovery from WRTs, emphasising their utilisation within the framework of the United Nations Sustainable Development Goals (SDGs) and the circular economy principles, is the need of the hour. Keeping this in mind, various techniques generally used for material recovery, viz., ambient, cryogenic, waterjet, and so on, which unveil innovative approaches to reclaiming valuable resources (viz., recycled rubber, textiles, steel wires, etc.) from WRTs and various devulcanisation techniques (viz., physical, chemical, and microbial) are elaborated in this paper. In parallel, the paper explores the utilisation of the WRTs and recovered materials, highlighting their application in geotechnical and geoenvironmental engineering development projects while addressing the necessary environmental precautions and associated environmental risks/concerns. This paper incorporates circular economy principles into WRTs utilisation and focuses on achieving SDGs by promoting resource efficiency and minimising their environmental impact.
Recycling paper sludge waste (PSW) into inexpensive sheets for applications in household interiors, construction, and footwear is a sustainable approach to resource utilisation and pollution reduction. A flexible recycled sheet (FRS) in board form was developed using cellulosic-based PSW from the paper industry and a styrene-butadiene rubber (SBR) binder. Various SBR concentrations were tested to determine the optimal amount for superior mechanical properties. The produced FRS was characterised using Fourier transform infrared spectroscopy, thermogravimetric analysis, high-resolution scanning electron microscopy, and energy-dispersive X-ray spectroscopy. FRS made with 1000 g of PSW:300 ml of SBR exhibited enhanced mechanical properties, including tensile strength (62.32 +/- 0.51 MPa), elongation at break (51.99 +/- 0.94%), tearing strength (17.76 +/- 0.45 N/mm), and flexibility (6.98 +/- 0.24%). A biodegradation study, conducted per ASTM D 5988-03, assessed environmental impact by measuring carbon-to-CO2 conversion in soil over 90 days. All FRS samples showed similar degradation within the first 30 days, with FRS 5 degrading significantly faster thereafter due to its higher cellulose and hemicellulose content. This highlights the potential of PSW-based FRS as an environmentally friendly and mechanically robust material for diverse applications.
The long-term stability of compacted soil liners in landfill barriers depends on maintaining extremely low water permeability and resisting cracking induced by wet-dry cycles. This study investigated the potential of biochar as an amendment to improve the characteristics of granite residual soil, a commonly used material in barrier construction. Laboratory experiments were conducted on soil-biochar blends at different compaction levels (60% and 80%) and biochar concentrations (0%, 5%, 10%, and 20% by mass). The results showed that biochar addition gradually reduced saturated soil water permeability by up to one order of magnitude. Alterations in pore size distributions indicated a shift towards smaller diameters, suggesting the role of biochar in blocking macropores. The crack experiments demonstrated that biochar lowered surface crack ratios by 75% compared with untreated soil. Moreover, biochar affected the drying behaviour of residual granite soils, prolonging the evaporation period from 10 to 12 days and increasing the residual moisture content from 5% to 8%. In conclusion, biochar exhibited the potential to diminish soil permeability coefficients and alleviate soil cracking, providing valuable insights for enhancing the long-term performance of landfill containment barriers.
This study evaluated lime-lignin composite stabilisers for clay enhancement. Results showed their synergistic effect significantly improved shear strength (S), cohesion (c), friction angle (phi), and maximum dynamic shear modulus (Gmax) of clay. Microstructural analysis revealed lime-induced granular crystals and lignin-generated cementitious products, enhancing soil structure. After 1 and 7 days curing, the clay stabilised with 6% lime and 2% lignin exhibited the highest S, c, phi and Gmax. After 14 days curing, the clay stabilised with 4% lime and 4% lignin exhibited the highest S, c, phi, and Gmax. A novel relative structural characterization method based on c and phi was proposed, alongside a modified Hardin's model integrating relative structural to predict Gmax. The study demonstrates that 6% lime + 2% lignin and 4% lime + 4% lignin ratios effectively enhance embankment clay properties, offering sustainable solutions for industrial byproduct utilization and soil stabilisation in geotechnical engineering.
In cold regions, the soil temperature gradient and depth of frost penetration can significantly affect roadway performance because of frost heave and thaw settlement of the subgrade soils. The severity of the damage depends on the soil index properties, temperature, and availability of water. While nominal expansion occurs with the phase change from pore water to ice, heaving is derived primarily from a continuous flow of water from the vadose zone to growing ice lenses. The temperature gradient within the soil influences water migration toward the freezing front, where ice nucleates, coalesces into lenses, and grows. This study evaluates the frost heave potential of frost-susceptible soils from Iowa (IA-PC) and North Carolina (NC-BO) under different temperature gradients. One-dimensional frost heave tests were conducted with a free water supply under three different temperature gradients of 0.26 degrees C/cm, 0.52 degrees C/cm, and 0.78 degrees C/cm. Time-dependent measurements of frost penetration, water intake, and frost heave were carried out. Results of the study suggested that frost heave and water intake are functions of the temperature gradient within the soil. A lower temperature gradient of 0.26 degrees C/cm leads to the maximum total heave of 18.28 mm (IA-PC) and 38.27 mm (NC-BO) for extended periods of freezing. The maximum frost penetration rate of 16.47 mm/hour was observed for a higher temperature gradient of 0.78 degrees C/cm and soil with higher thermal diffusivity of 0.684 mm(2)/s. The results of this study can be used to validate numerical models and develop engineered solutions that prevent frost damage.
Contaminant leaching from asphalt pavements poses a significant environmental concern, potentially damaging soil and groundwater quality. The growing interest in incorporating recycled materials in asphalt pavements has further raised concerns over the potential environmental hazards due to contaminant leaching. Consequently, this paper offers a comprehensive review of the literature over the past three decades structured into six sections: groundwater contamination via leaching, methodologies for evaluating leaching, analysis of contaminants, contaminants and leaching from road materials incorporating recycled waste, other factors affecting leaching of pollutants from asphalt pavements, and mathematical models to predict leaching from asphalt pavements. Despite the importance of addressing leaching issues, there is a lack of standardised leaching tests and guidelines specific to asphalt materials, limited attention to evaluating contaminants beyond heavy metals and PAHs in asphalt leachates, insufficient understanding of optimal instrument parameters for asphalt leachate analysis, and a scarcity of mathematical models to predict future leaching potential.
This study aimed to enhance the mechanical characteristics of the road subgrade layer by incorporating ground tile waste and lime as a soil stabiliser. The investigation on the effectiveness of tile waste as a supplementary additive to lime in subgrade stabilisation involved adding 7% of lime and varying percentages of 10%, 20%, 30% and 40% of tile waste. The study analysed the plasticity, compatibility, unconfined compressive strength, pH, the results of the indirect tensile test and microstructure of the soil samples. The results indicated that incorporating a mixture of lime and tile waste into the soil significantly enhanced soil strength. Adding higher percentages of tile waste to the soil-lime blend resulted in a proportional improvement in the soil's mechanical properties. In summary, using recycled tile waste for subgrade stabilisation can provide a sustainable and cost-effective solution for improving road and pavement performance and reducing the environmental impacts of road and pavement construction.
The plastic mold compaction device (PM Device) was developed in Mississippi to compact cementitiously stabilized soil inside plastic molds to improve soil-cement quality by adding value during design and construction activities. The PM Device has been incorporated as an AASHTO provisional standard (AASHTO PP92-19) and, to date, prevailing activities have been Mississippi Department of Transportation projects and have included controlled laboratory evaluations and field projects. This paper goes beyond previous efforts, to document a field study in which the PM Device was successfully used on an Alabama Department of Transportation project to evaluate its effectiveness within another state's construction specifications. The PM Device was capable of capturing quantifiable variation in mechanical properties over the duration of the construction project, as well as producing similar mechanical properties to cores taken from the compacted pavement surface. Additionally, molds described in AASHTO PP92-19 were compared with one another to evaluate their potential within the standard practice. AASHTO PP92-19 protocols were sufficient to produce viable, repeatable test specimens within another state department of transportation construction environment for quality control and quality assurance.
In this paper, the drained shear behavior of cement-stabilized recycled asphalt pavement (RAP)-lateritic soil blends is presented. The marginal lateritic soil was replaced by RAP to reduce the fine content and then stabilized by Portland cement for ground improvement and pavement applications. The effect of cement content and RAP content on the shear behavior of RAP-soil samples was evaluated through a series of drained triaxial test. The result indicated that RAP replacement ratio, cement content, and effective stress significantly affected the drained shear of RAP-soil samples. The shear strength increased with cement content and RAP content. However, the excessive RAP replacement ratio results in the reduction of peak shear strength. The brittle to ductile transition was found when effective confining pressure increased. RAP replacement increased the maximum volumetric compression and the dilatation rate of the blends as the inclusion of compressible asphalt binder increased the ductility of RAP-soil samples. The stress-dilatancy behavior of RAP-soil samples was similar to that of medium to dense soil. The stress ratio and dilation significantly depended on RAP replacement ratio, and cement content. The dilation was suppressed when effective confining pressure increased. Row's stress dilatancy equation can model the stress-dilatancy behavior of unstabilized and stabilized RAP-soil samples.
Utilizing natural expansive clays that are available on-site as sewer trench backfill can cause destructive deformations due to volume changes, which are caused by seasonal climatic changes. Such deformations result in manhole structures protruding from the surface, which cause damage to the surrounding infrastructure and generate potential trip hazards. In this study, mixtures of recycled materials with minor sensitivity to moisture variations and superior compactibility were investigated using geomechanics theories associated with granular materials as an alternative backfill material. Blends of recycled glass (RG), plastic (RP), and tire-derived aggregates (TDA) were mixed on-site, wetted to the required moisture content (MC), and used to backfill excavated trenches around two manhole structures and extended to approximately 11 m along the trench. A benchmark trial was constructed by backfilling with natural soils available on-site according to the normal procedure. The full-scale trial sites were instrumented using settlement plates and MC sensors at various locations and depths for performance monitoring. The results of approximately 17 months of field monitoring showed that settlements over both areas that were backfilled with recycled blends were <20% of those over areas backfilled with site-won soils. Approximately 82% of the settlements in the recycled blends occurred during construction. In contrast, trenches that were backfilled with site-won soils continued to exhibit deformation due to consolidation and swell-shrink cycles. The outcome of this study could contribute to the United Nations' Sustainable Development Goals, in particular, Goal 12, by improving the industry's confidence in the reuse of wastes in geotechnical applications.