Pavements and light structures constructed on expansive subgrade layers have experienced severe damage due to volume changes. These layers have been exposed to climatic changes such as freeze-thaw (FT) cycles. Accurate estimation of design parameters regarding heave/settlement is essential for sustainable performance. This work study the instantaneous and long-term effects of successive FT-cycles on the volume stability, swelling, and compressibility characteristics of natural and lime-treated expansive subgrades. Volume changes were traced during successive 15FT cycles. Swelling and consolidation characteristics were studied immediately after FT-cycles. The long-term effect of FT was tested at different recovery periods around year. FT-cycles significantly affects volume changes and compressibility, this effect is proportional to soil type and limited up to a certain number of FT-cycles. During the long-term recovery, a considerable part of underwent deformation is a permanent and not recovered, even after year the soil still memorizes this effect. Due to the propagated cracks, the plastic deformation increased with increase in FT-cycles.