共检索到 2

Biochar amendment and substituting chemical fertilizers with organic manure (organic substitution) have been widely reported to improve intensive vegetable production. However, considering its high potential for reducing carbon and reactive nitrogen (Nr) footprints, very few comprehensive evaluations have been performed on the environmental and economic aspects of biochar amendment or organic substitution. In this study, the comprehensive environmental damage costs from carbon and Nr footprints, measured using the life cycle assessment (LCA) methodology, followed a cradle-to-gate approach, and the carbon storage benefits were incorporated into the newly constructed net ecosystem economic benefit (NEEB) assessment frame in addition to the conventional product income-input cost-benefit methods. One kilogram of harvested vegetables for carbon/Nr footprints and one hectare of cultivated land per crop for cost and benefit were adopted as functional units considering the multi-cropping characteristics for intensive vegetable production. Five fertilization treatments were included: no fertilizer (CK); synthetic fertilizer application (SN); biochar amendment (NB); organic substitution (NM); and a combination of biochar and organic substitution (NMB). These were investigated for five consecutive years of vegetable crop rotations in a typically intensified vegetable production region in China. Adopting the revised NEEB methodology, NB significantly reduced carbon footprint by 73.0% compared to no biochar addition treatment. Meanwhile, NB significantly increased the total benefits by 9.7% and reduced the environmental damages by 52.7% compared to NM, generating the highest NEEB, making it the most effective fertilization strategy among all treatments. It was 4.3% higher compared to NM, which was not significant, but significantly higher than SN and NMB, by 23.0% and 13.6%, respectively. This finding highlights the importance of considering carbon storage benefit for properly assessing NEEB, which is important for developing effective agricultural management strategies and promoting intensive vegetable production with a more sustainable approach.

期刊论文 2024-11-01 DOI: 10.3390/agronomy14112693

Reactive nitrogen (Nr) pollution has changed radically accompanied by severe intensive farming. This pollution further contributes to ecological degradation and climate warming. Despite this recognition, little is known about the spatial pattern of various Nr loss from croplands and corresponding environmental costs. Here, we identified the major pathway of Nr loss based on provincial estimates in 2008 and 2018, and validated by synchronous observation of ammonia volatilization, N runoff and N leaching using historical literature synthesis. We also evaluated environmental costs at provincial scale and detected the influence factors that dominating the pollution swapping among different Nr forms. Our results show that the total Nr loss was 6.28 +/- 1.81 and 5.56 +/- 2.30 Tg N yr(-1) for Chinese croplands in 2008 and 2018. Ammonia volatilization, which accounted for more than half of the total Nr at the national scale, was proven to be the major Nr loss for two-thirds of the provinces and 80 % of the field observations. The contribution of runoff, which is dominant by precipitation, soil clay content and CEC, was gradually smaller than that of leaching from southeast to northwest. Ammonia and nitrous oxide contributed of 59.3 % - 65.4 % of TNr but 80.9 % - 81.5 % of total environmental damage caused by Nr in China. The use of nitrification inhibitors and straw return indicated pollution swapping among various Nr forms. This study emphasizes that the future practices to reduce total Nr loss need to account for local environmental conditions and have pollution swapping in sights.

期刊论文 2024-03-10 DOI: 10.1016/j.scitotenv.2024.170014 ISSN: 0048-9697
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页