共检索到 2

Sudden and unforeseen seismic failures of coal mine overburden (OB) dump slopes interrupt mining operations, cause loss of lives and delay the production of coal. Consideration of the spatial heterogeneity of OB dump materials is imperative for an adequate evaluation of the seismic stability of OB dump slopes. In this study, pseudo-static seismic stability analyses are carried out for an OB dump slope by considering the material parameters obtained from an in-situ field investigation. Spatial heterogeneity is simulated through use of the random finite element method (RFEM) and the random limit equilibrium method (RLEM) and a comparative study is presented. Combinations of horizontal and vertical spatial correlation lengths were considered for simulating isotropic and anisotropic random fields within the OB dump slope. Seismic performances of the slope have been reported through the probability of failure and reliability index. It was observed that the RLEM approach overestimates failure probability (Pf) by considering seismic stability with spatial heterogeneity. The Pf was observed to increase with an increase in the coefficient of variation of friction angle of the dump materials. Further, it was inferred that the RLEM approach may not be adequately applicable for assessing the seismic stability of an OB dump slope for a horizontal seismic coefficient that is more than or equal to 0.1.

期刊论文 2025-01-01 DOI: 10.1007/s11803-025-2303-y ISSN: 1671-3664

This study aimed to emphasize the significance of spatial variability in soil strength parameters on the behavior of nailed walls, highlighting the necessity of probabilistic design approaches. The investigation involved a 7.2-m nailed wall reinforced with five nails, simulated using the local average subdivision random field theory combined with the limit equilibrium method and the FEM, known as the random limit equilibrium method (RLEM) and the random finite-element method (RFEM) approaches. Initially, the wall stability was evaluated by RLEM using 10,000 Latin hypercube sampling realizations. The wall was globally stable among all samples for a correlation length equal to its height (7.2 m). The wall behavior, associated displacements, moments, wall shear forces, nail axial forces, and ground settlements were examined using RFEM. The RFEM analysis reveals that different random fields influence the maximum displacement (H-max), maximum moment (M-max), and maximum shear force (Vmax) experienced by the wall. The cumulative distribution function plots were generated for the wall critical parameters, including H-max, M-max, and V-max. Leveraging the simple weighted averaging and ordered weighted averaging techniques, different combinations of H-max, M-max, and Vmax were assessed with varying weight assumptions. This allowed us to identify critical random field realizations and estimate the level of risk using a newly introduced parameter, the decision index. Finally, the effect of different correlation lengths (isotropic and anisotropic) for two different coefficients of variation of soil strength parameters on the distribution of H-max, M-max, and Vmax was studied. The findings highlight the importance of considering the spatial variability of soil properties to achieve a reliable design of nailed walls.

期刊论文 2024-12-01 DOI: 10.1061/IJGNAI.GMENG-9887 ISSN: 1532-3641
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页