共检索到 3

The present investigation outlines the crucial factors that influence the black carbon (BC) concentrations over a polluted metropolis, Kolkata (22.57 & DEG; N, 88.37 & DEG; E), India. Located in the eastern part of the Indo Gangetic Plain (IGP) outflow region and close to the land-ocean boundary, Kolkata is subject to contrasting seasonal maritime airflow from the Bay of Bengal and continental air mass from the IGP and Tibetan plateau region, which modulates the local concentration of BC. The origin of aerosol transport and associated atmospheric dynamics with high and low BC activities over Kolkata are examined during 2012-2015 using data from multi-technique sources which include measurements of ground-based instruments of aethalometer and multi-frequency microwave radiometer, reanalysis data from ERA-5 and MEERA-2, and model outputs from HYPSLIT back trajectory model simulations. The study highlights the control of IGP wind inflow on the occurrence of anomalous enhancements in BC concentration during weekends and holidays when local emissions are low. High BC events are associated with enhanced atmospheric heating below the boundary layer (2000 m) and significant negative surface radiative forcing. The response of the boundary layer to high and low BC episodes, shown in the diurnal variation in comparison with the seasonal mean, is investigated. Dominant suppression of morning and night-time boundary layer height is observed on high BC days. During the daytime in pre-monsoon, post-monsoon, and winter seasons, boundary layer height peaks are found to be strongly controlled by high BC episode occurrences as obtained from the hourly data of ERA-5.

期刊论文 2023-02-01 DOI: 10.1007/s10661-022-10865-4 ISSN: 0167-6369

Owing to the Moon's rough surface, there is a growing controversy over the conclusion that water ice exists in the lunar permanently shadowed regions (PSRs) with a high circular polarization ratio (CPR). To further detect water ice on the Moon, an innovative design method for spaceborne synthetic aperture radar (SAR) system is proposed, to obtain radar data that can be used to distinguish water ice from lunar regolith with a small difference in the dielectric constants. According to Campbell's dielectric constant model and the requirement that SAR radiometric resolution is smaller than the contrast of targets in images, a newly defined SAR system function involved in the method is presented to evaluate the influence of some system parameters on the water ice detection capability of SAR. In addition, several simulation experiments are performed, and the results demonstrate that the presented SAR design method may be helpful for lunar water ice exploration.

期刊论文 2022-05-01 DOI: 10.3390/rs14092148

The Lyman Alpha Mapping Project (LAMP) is a lightweight (6.1 kg), low-power (4.5 W), ultraviolet spectrograph based on the Alice instruments now in flight aboard the European Space Agency's Rosetta spacecraft and NASA's New Horizons spacecraft. Its primary job on NASA's Lunar Reconnaissance Orbiter (LRO) is to identify and localize exposed water frost in permanently shadowed regions (PSRs) near the Moon's poles, and to characterize landforms and albedos in PSRs. In this paper we describe the in-flight radiometric performance and commissioning results and compare them to ground calibration measurements.

期刊论文 2011-01-01 DOI: 10.1117/12.894282 ISSN: 0277-786X
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页