Air pollution is a global health issue, and events like forest fires, agricultural burning, dust storms, and fireworks can significantly worsen it. Festivals involving fireworks and wood-log fires, such as Diwali and Holi, are key examples of events that impact local air quality. During Holi, the ritual of Holika involves burning of biomass that releases large amounts of aerosols and other pollutants. To assess the impact of Holika burning, observations were conducted from March 5th to March 18th, 2017. On March 12th, 2017, around 1.8 million kg of wood and biomass were openly burned in about 2250 units of Holika, located in and around the Varanasi city (25.23 N, 82.97 E, similar to 82.20 m amsl). As the Holika burning event began the impact on the Black Carbon (BC), particulate matter 10 & 2.5 (PM10 and PM2.5), sulphur dioxide (SO2), oxides of nitrogen (NOx), ozone (O-3) and carbon monoxide (CO) concentration were observed. Thorough optical investigations have been conducted to better comprehend the radiative effects of aerosols produced due to Holika burning on the environment. The measured AOD at 500 nm values were 0.315 +/- 0.072, 0.392, and 0.329 +/- 0.037, while the BC mass was 7.09 +/- 1.78, 9.95, and 7.18 +/- 0.27 mu g/m(3) for the pre-Holika, Holika, and post-Holika periods. Aerosol radiative forcing at the top of the atmosphere (ARF-TOA), at the surface (ARF-SUR), and in the atmosphere (ARF-ATM) are 2.46 +/- 4.15, -40.22 +/- 2.35, and 42.68 +/- 4.12 W/m(2) for pre-Holika, 6.34, -53.45, and 59.80 W/m(2) for Holika, and 5.50 +/- 0.97, -47.11 +/- 5.20, and 52.61 +/- 6.17 W/m(2) for post-Holika burning. These intense observation and analysis revealed that Holika burning adversely impacts AQI, BC concentration and effects climate in terms of ARF and heating rate.
Estimating Top-of-Atmosphere (TOA) flux and radiance is essential for understanding Earth's radiation budget and climate dynamics. This study utilized polar nephelometer measurements of aerosol scattering coefficients at 17 angles (9-170 degrees), enabling the experimental determination of aerosol phase functions and the calculation of Legendre moments. These moments were then used to estimate TOA flux and radiance. Conducted at a tropical coastal site in India, the study observed significant seasonal and diurnal variations in angular scattering patterns, with the highest scattering during winter and the lowest during the monsoon. Notably, a prominent secondary scattering mode, with varying magnitude across different seasons, was observed in the 20-30 degrees angular range, highlighting the influence of different air masses and aerosol sources. Chemical analysis of size-segregated aerosols revealed that fine-mode aerosols were dominated by anthropogenic species, such as sulfate, nitrate, and ammonium, throughout all seasons. In contrast, coarse-mode aerosols showed a clear presence of sea-salt aerosols during the monsoon and mineral dust during the pre-monsoon periods. The presence of very large coarse-mode non-spherical aerosols caused increased oscillations in the phase function beyond 60 degrees during the pre-monsoon and monsoon seasons. This also led to a weak association between the phase function derived from angular scattering measurements and those predicted by the Henyey-Greenstein approximation. As a result, TOA fluxes and radiances derived using the Henyey-Greenstein approximation (with the asymmetry parameter as input in the radiative transfer model) showed a significant difference- up to 24% in seasons with substantial coarse-mode aerosol presence- compared to those derived using the Legendre moments of the phase function. Therefore, TOA flux and radiance estimates using Legendre moments are generally more accurate in the presence of complex aerosol scattering characteristics, particularly for non-spherical or coarse-mode aerosols, while the Henyey-Greenstein phase function may yield less accurate results due to its simplified representation of scattering behavior.
This study investigates aerosol characteristics using ground-based measurements at two distinct regions, MohalKullu (31.9 degrees N, 77.12 degrees E; 1154 m amsl) and Kosi-Katarmal (29.64 degrees N, 79.62 degrees E; 1225 m amsl), from July 2019 to June 2022. The average Black Carbon (BC) concentrations were 1.5 f 1.0 mu g m- 3 at Mohal and 1.1 f 1.4 mu g m-3 at Katarmal. BC showed strong seasonal variability, with maxima during post-monsoon (2.6 f 1.0 mu g m- 3) and pre-monsoon (1.8 f 0.5 mu g m-3) seasons. The diurnal variation displayed distinct morning and evening peaks in all the seasons. High pre-monsoon AOD500 (0.30 f 0.06 to 0.54 f 0.08) and low values of & Aring;ngstrom exponent (0.67 f 0.10 to 0.95 f 0.30) indicated dominance of large particles, whereas lower AOD500 (0.21 f 0.07 to 0.25 f 0.03) in post-monsoon and winter, along with larger & Aring;ngstrom exponent (1.05 f 0.74 to 1.13 f 0.11), indicated smaller particles. Satellite-derived (OMI and MAIAC) AOD500 showed weak to moderate correlation with ground-based measurements at Mohal (R = 0.4639 for MAIAC, R = 0.1402 for OMI) and Katarmal (R = 0.3976 for MAIAC, R = 0.2980 for OMI). Using optical properties of aerosols and clouds (OPAC) and Santa Barbara discrete ordinate radiative transfer (SBDART) models, the short-wave aerosol radiative forcing (SWARF) was found negative at the surface and top of the atmosphere but positive in the atmosphere, suggesting significant surface cooling and atmospheric warming leading to high heating rates, respectively. Annual mean atmospheric radiative forcing was 27.36 f 6.00 Wm- 2 at Mohal and 21.87 f 7.26 Wm- 2 at Katarmal. These findings may have consequences for planning air pollution strategies and understanding the effects of regional climate change.
In South Asia, our understanding of atmospheric aerosols and their optical properties is limited, posing a challenge to comprehending climate change dynamics. This study characterises aerosol optical properties, radiative properties, black carbon (BC) and ozone (O3) at seven South Asian locations, including Nam Co (Tibetan Plateau, TP), Dhaka, Bhola (Bangladesh), and Hanimaadhoo, Kashidhoo, Male' and Gan (Maldives). The study utilises columnar aerosol data from the Aerosol Robotic Network (AERONET) and reanalysis data from Modern-Era Retrospective Analysis for Research and Applications (MERRA-2) from 2001 to 2020. Notably, during the winter, the highest Aerosol optical depth (AOD) levels were observed in Dhaka (1.0 +/- 0.5) and Bhola (0.8 +/- 0.4) among these seven locations. BC concentrations in Dhaka ranged from 2.1 to 2.8 mu g m-3, while Bhola recorded concentrations between 1.4 and 2.1 mu g m-3. O3 levels across Maldives sites remained consistent, with values ranging between 314 and 345 dobson units (DU), surpassing those in Bangladesh and TP. The analysis shows a significant difference in the rate at which the atmosphere heats (HR) up due to aerosols. Higher heating rates were observed over Kashidhoo during the post-monsoon and winter seasons, while lower values were seen during the pre-monsoon and monsoon seasons, compared with Hanimaadhoo and Male'. It is important to note that Bangladesh had higher HR values than the Maldives. This study helps us better understand the impact of atmospheric aerosols on South Asia's climate and the different seasonal patterns.
Under environment with various water contents, the variations in the mixing state and particle size of coated black carbon (BC) aerosols cause changes in optical and radiative effects. In this study, fractal models for thinly, partially, and thickly coated BC under six relative humidities (RHs 1/4 0-95%) are constructed and optically simulated at 1064 and 532 nm. Differential scattering cross-sections are selected to retrieve the mixing state (Dp/Dc) of BC to investigate the possible retrieval errors caused by the nonspherical morphology when using the single-particle soot photometer (SP2). Furthermore, the radiative forcing of BC aerosols at different RHs are analyzed. Results showed that the retrieval errors (REs) of Dp/Dc are negative for coated particles with BC volume fraction smaller than 0.10, indicating that the mixing states of coated fractal BC are underestimated during the hygroscopic growth. The partiallycoated BC has the best retrieval accuracy of the mixing state, followed by the closed-cell and coatedaggregate model, judging from averaged REs. Radiative forcing enhancements for partially-coated aerosols with different BC volume fractions exponentially increase to opposite values, resulting in a warming or cooling effect. This study helps understand the uncertainties in Dp/Dcof BC aerosols retrieved by SP2 and their radiative forcing at different RHs. (c) 2025 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
We present a multi-year study of Saharan dust intrusions on a mountainous site located in the central Mediterranean Basin regarding their aerosol optical and geometrical properties. The observations were carried out at the Consiglio Nazionale delle Ricerche-Istituto di Metodologie per l'Analisi Ambientale (CNR-IMAA) located in Potenza (40,360N, 15,440E), Italy, from March 2010 to October 2022, using ACTRIS (Aerosol Clouds and Trace Gases Research InfraStructure). A total of 101 night-time lidar measurements of dust intrusions were identified. The following properties were calculated for the periods December, January, February (DJF), March, April, May (MAM), June, July, August (JJA) and September, October, November (SON): aerosol layer center of mass altitude, particle lidar ratio at 355 and 532 nm, particle depolarization ratio at 532 nm and backscattering & Aring;ngstr & ouml;m exponent at 532-1064 nm. Both geometrical and optical aerosol properties vary considerably with the seasons. During SON and DJF, air masses transporting dust travel at lower altitudes, and become contaminated with local continental particles. In MAM and JJA, dust is also likely to travel at higher altitudes and rarely mix with other aerosol types. As a result, aerosols are larger in size and irregular in shape during the warm months. The ratio of the lidar ratios at 355 and 532 nm is 1.11 +/- 0.15 in DJF, 1.12 +/- 0.07 in SON, 0.94 +/- 0.12 in MAM, and 0.92 +/- 0.08 in JJA. The seasonal radiative effect estimated using the Fu-Liou-Gu (FLG) radiative transfer model indicates the most significant impact during the JJA period. A negative dust radiative effect is observed both at the surface (SRF) and at the top of the atmosphere (TOA) in all the seasons, and this could be related to a minimal contribution from black carbon. Specifically, the SRF radiative effect estimation is -14.48 +/- 1.32 W/m2 in DJF, -18.00 +/- 0.89 W/m2 in MAM, -22.08 +/- 1.36 W/m2 in JJA, and -13.47 +/- 1.12 W/m2 in SON. Instead, radiative effect estimation at the TOA is -22.23 +/- 2.06 W/m2 in DJF, -38.23 +/- 2.16 W/m2 in MAM, -51.36 +/- 3.53 W/m2 in JJA, and -22.57 +/- 2.11 W/m2 in SON. The results highlight how the radiative effects of the particles depend on the complex relationship between the dust load, their altitude in the troposphere, and their optical properties. Accordingly, the knowledge of aerosols optical property profiles is of primary importance to understand the radiative impact of dust.
Pollutant emissions in China have significantly decreased over the past decade and are expected to continue declining in the future. Aerosols, as important pollutants and short-lived climate forcing agents, have significant but currently unclear climate impacts in East Asia as their concentrations decrease until mid-century. Here, we employ a well-developed regional climate model RegCM4 combined with future pollutant emission inventories, which are more representative of China to investigate changes in the concentrations and climate effects of major anthropogenic aerosols in East Asia under six different emission reduction scenarios (1.5 degrees C goals, Neutral-goals, 2 degrees C -goals, NDC-goals, Current-goals, and Baseline). By the 2060s, aerosol surface concentrations under these scenarios are projected to decrease by 89%, 87%, 84%, 73%, 65%, and 21%, respectively, compared with those in 2010-2020. Aerosol climate effect changes are associated with its loadings but not in a linear manner. The average effective radiative forcing at the surface in East Asia induced by aerosol-radiation-cloud interactions will diminish by 24% +/- 13% by the 2030s and 35% +/- 13% by the 2060s. These alternations caused by aerosol reductions lead to increases in near-surface temperatures and precipitations. Specifically, aerosol-induced temperature and precipitation responses in East Asia are estimated to change by -78% to -20% and -69% to 77%, respectively, under goals with different emission scenarios in the 2060s compared to 2010-2020. Therefore, the significant climate effects resulting from substantial reductions in anthropogenic aerosols need to be fully considered in the pathway toward carbon neutrality.
Atmospheric particulate matter (PM) as light-absorbing particles (LAPs) deposited to snow cover can result in early onset and rapid snow melting, challenging management of downstream water resources. We identified LAPs in 38 snow samples (water years 2013-2016) from the mountainous Upper Colorado River basin by comparing among laboratory-measured spectral reflectance, chemical, physical, and magnetic properties. Dust sample reflectance, averaged over the wavelength range of 0.35-2.50 mu m, varied by a factor of 1.9 (range, 0.2300-0.4444) and was suppressed mainly by three components: (a) carbonaceous matter measured as total organic carbon (1.6-22.5 wt. %) including inferred black carbon, natural organic matter, and carbon-based synthetic, black road-tire-wear particles, (b) dark rock and mineral particles, indicated by amounts of magnetite (0.11-0.37 wt. %) as their proxy, and (c) ferric oxide minerals identified by reflectance spectroscopy and magnetic properties. Fundamental compositional differences were associated with different iron oxide groups defined by dominant hematite, goethite, or magnetite. These differences in iron oxide mineralogy are attributed to temporally varying source-area contributions implying strong interannual changes in regional source behavior, dust-storm frequency, and (or) transport tracks. Observations of dust-storm activity in the western U.S. and particle-size averages for all samples (median, 25 mu m) indicated that regional dust from deserts dominated mineral-dust masses. Fugitive contaminants, nevertheless, contributed important amounts of LAPs from many types of anthropogenic sources.
Aerosols significantly impact the Earth's climate, affecting the amount of solar radiation that reaches its surface and directly impacting global warming. A large uncertainty regarding the impacts of aerosols on climate is related to Brown Carbon (BrC), an organic constituent emitted due to the incomplete combustion of light-absorbing biomass. This study aimed to define and quantify Black Carbon (BC) and Brown Carbon (BrC) absorptions using in-situ measurements from a campaign carried out in the Pantanal Mato Grosso between 2017 and 2019. The models were adjusted to calculate the Radiative Forcing (RF). By examining the RF perturbations caused by these two components, it was possible to determine the radiative balance perturbations at the upper atmospheric layer (top) and the surface. This study presented innovative findings that may help improve the understanding of the energy balance in the Pantanal region while allowing more accurate estimates of the contribution of aerosols to climate change models.
Rationale. Glaciers in the Tibetan Plateau (TP), especially in the Himalayas, are retreating rapidly due to rising air temperature and increasing anthropogenic emissions from nearby regions. Traditionally, pollutants deposited on the glaciers have been assumed to originate from long-range transport from its outside. Methodology. This study investigated the concentrations of black carbon (BC) and major ions in snowpit samples collected from two glaciers in the south-eastern TP (Demula and Palongzangbu) and one glacier in the west Himalayas (Jiemayangzong). The radiative forcing of BC was calculated based on BC concentration and glacier characteristics. Results. The results revealed that the BC/Ca2+ concentration ratio in snowpit samples from Palongzangbu, located near residential villages, is similar to 2.05 times higher than that of Demula, which is mainly influenced by long-range transported pollutants. Furthermore, on Jiemayangzong glacier, snowpit samples collected with 100-m vertical resolution exhibited that BC-induced radiative forcings at low altitude are similar to 2.37 +/- 0.16 times greater than those at high altitude. Discussion. These findings demonstrated that in addition to long-range transport, emissions from local residents also make substantial contributions to BC and certain major ions (e.g. SO42-). To accurately assess the sources and radiative forcing of BC and other light-absorbing impurities on glaciers of the TP, it is necessary to consider the impact of local populations and altitude-dependent variations.