The displacements between segment rings are highly likely to occur in concealed creep fault areas. The dislocation of ring joint easily leads to the crushing of concrete around the bolt hole, which will become a potential safety hazard during tunnel service. For this problem, a composite Tenon was designed to improve the interaction at ring joint. It is necessary to carry out theoretical research to reveal the mechanical property of the ring joint. In this paper, a constitutive model of the Tenon was proposed based on specimen tests and numerical models. And the mechanical characteristics of the ring joint were investigated through prototype experiment and numerical simulation. The research results show that the composite Tenon is a flexible structure that can avoid the hard extrusion between the Tenon and the segments. The Tenon also has obvious protection effect on bolt and concrete around the handhole, which reserves more bearing space for the ring joint. These advantages are more conducive to dealing with potential risks such as earthquake, cyclic train loads, tunnel convergence deformation and uneven soil settlement during operation. The paper provides a theoretical basis for the application and promotion of the composite Tenon structure in the tunnel engineering.