The frequent occurrence of earthquakes worldwide has rendered highway slope protection projects highly vulnerable to damage from seismic events and their secondary disasters. This severely hampers the smooth implementation of post-disaster rescue and recovery efforts. To address this challenge, this study proposes a comprehensive method for assessing seismic losses in slope protection projects, incorporating factors such as topography and elevation to enhance its universality. The method categorizes seismic losses into two main components: damage to protection structures and costs associated with landslide and rockfall clearance and transportation. This study estimates the cost range for common protection structures and clearance methods under general conditions based on widely recognized quota data in China. It establishes criteria for classifying the damage states of protection structures and provides loss ratio values based on real-world seismic examples and expert experience, constructing a model for assessing damage losses. Additionally, by summarizing the geometric characteristics of soil and rock accumulations on road surfaces, a method for estimating landslide volumes is proposed, considering the dynamic impact of slope gradients on clearance and transportation volumes, and a corresponding cost assessment model for clearance and transportation is developed. The feasibility and reliability of the proposed method are verified through two case studies. The results demonstrate that the method is easy to implement and provides a scientific basis for improving relevant standards and practices. It also offers an efficient and scientific tool for loss assessment to industry practitioners.
The bank protection measures of waterways shall become more environmentally friendly in the future including the use of plants instead of stones. The low levels of protection provided by plants in the early phase after planting requires a process-based understanding of soil-wave-interaction. One process that is considered essential is liquefaction where the soil undergoes a phase-change from solid-like to fluid-like behaviour which could reduce the safety of the system. The aim of this publication is to analyse the results of column experiments on wave-induced soil liquefaction and to develop a numerical model which is able to describe the entire process from the pre-liquefaction phase to the following reconsolidation in order to support the analysis of liquefaction experiments. Numerical simulations of the column experiments were done using a fully coupled hydro-mechanical model implemented in the open-source software FEniCS. A permeability model derived from granular rheology allows the simulation of dilute as well as dense suspensions and sedimented soil skeletons. The results of the simulations show a good agreement with the experimental data. Theoretical limits in the liquefied state are captured without the common modelling segmentation into pre-and post-liquefaction phase. Due to the modular structure of the implementation, the constitutive setting can be adjusted to incorporate more complex formulations in order to study the influence of wall friction and non-linearity in soil behaviour.
Soil organisms are key to plant growth and ecosystem functions. Earthworms (EWs) enhance soil and indirectly affect plant growth, while their cutaneous excreta (CEx) contain bioactive compounds capable of eliciting plant responses. However, their role in plant immunity is still not well understood. We hypothesized that EWs and their CEx enhance plant defense against foliar pathogens by activating induced resistance. To test this, we evaluated the effect of Eisenia fetida and their CEx on Solanum lycopersicum (tomato), focusing on growth, physiology, and defense response against Botrytis cinerea. Plants were exposed to EWs, CEx, or water (control), followed by B. cinerea infection after two weeks. Gene expression of defense markers was assessed at 24 and 48 h post-inoculation (hpi), while physiological parameters and disease severity were evaluated at 72 hpi. EWs increased shoot biomass compared to CEx, while both treatments reduced root dry weight, suggesting a possible shift in resource allocation. CEx significantly reduced B. cinerea-induced leaf damage and showed a trend for flavonoid accumulation, a known marker of induced resistance. Both treatments, EWs and CEx, activated the jasmonic acid (JA) signaling pathway, with CEx specifically upregulating genes involved in fungal pathogen defense, sustaining their expression over time. The present study offers, for the first time, clear evidence that EW derived CEx can induce resistance by stimulating plant defense responses. Further biochemical, transcriptomic, and metabolomic analyses are needed to confirm indirect results, along with field validation. Nonetheless, the findings underscore the crucial role of soil biodiversity in enhancing crop resilience.
The displacements between segment rings are highly likely to occur in concealed creep fault areas. The dislocation of ring joint easily leads to the crushing of concrete around the bolt hole, which will become a potential safety hazard during tunnel service. For this problem, a composite Tenon was designed to improve the interaction at ring joint. It is necessary to carry out theoretical research to reveal the mechanical property of the ring joint. In this paper, a constitutive model of the Tenon was proposed based on specimen tests and numerical models. And the mechanical characteristics of the ring joint were investigated through prototype experiment and numerical simulation. The research results show that the composite Tenon is a flexible structure that can avoid the hard extrusion between the Tenon and the segments. The Tenon also has obvious protection effect on bolt and concrete around the handhole, which reserves more bearing space for the ring joint. These advantages are more conducive to dealing with potential risks such as earthquake, cyclic train loads, tunnel convergence deformation and uneven soil settlement during operation. The paper provides a theoretical basis for the application and promotion of the composite Tenon structure in the tunnel engineering.
Compared with the water-base drilling fluid, oil-based drilling fluid has always been one of the important technical guarantees in high temperature deep well, high-inclination directional well and all kinds of complex seismic exploration. With 5#white oil selected and taken as continuous phase, emulsifying agent, organic soil, tackifier, fluid loss agent, lime, other treatment agents and dosages are optimized and the optimal formula of oil-base drilling fluid is determined. This new type environmentally-friendly oil-base drilling fluid possesses good rheological properties, suspension capability, high temperature stability, stronger anti-pollution ability and common emulsion-breaking voltage of more than 2000 V. During the field application, this fluid possesses regular borehole diameter, good lubricity, stable borehole, simple preparation process, easy site maintenance and good reservoir protection features. Furthermore, it can solve complex formation, water expansion of clay shale, poor lubrication & drag reduction effect, poor reservoir protection effect and other technically-difficult problems.
http://www.nieer.cas.cn/ 青藏高原及周边高山地区统称为“第三极”地区,是除南北极外最大的冰川集中区。在全球气候变暖背景下,第三极地区正经历显著增温,气温上升加速了冰川消融,进而影响区域生态平衡。第三极冰川前缘作为海拔最高的陆地脆弱生境之一,对气候及冰川变化响应敏感。深入了解冰川前缘植被动态,对科学评估冰缘生态系统响应气候至关重要。然而,受制于观测条件,目前仍缺乏对该地区冰缘植被的大范围系统性观测研究。 中国科学院西北生态环境资源研究院上官冬辉研究员团队与兰州交通大学、中巴地球科学联合研究中心及南通大学相关研究团队合作,选取第三极地区9条代表性冰川,在其前缘布设样地并获取植被信息。利用植被指数量化了冰川退缩时间序列上植物群落特征的变化,并结合植物区系相似性指数,系统分析了不同样地间及不同冰川前缘间的植物区系相似性。 研究显示,物种多样性和植被盖度沿冰川退缩时间序列呈波动增加趋势,且在海洋性冰川前缘的增加速率尤为显著。所有冰川前缘的植物生活型在演替早期阶段较为相似,但随着演替推进,生活型组成开始分化,在不同类型冰川前缘间差异更为明显。此外,不同冰川前缘间具有植物区系相似性,其中地理位置邻近且属于同一类型冰川的前缘地区植物区系相似性最高。 该研究揭示了局地气候与地理因子在塑造冰川前缘生态系统及植物区系格局中扮演的关键作用,为阐明气候变化对冰川前缘生态系统的影响提供了科学依据,并为区域生物多样性保护工作提供了理论指导。 该成果以Vegetation successional dynamics and floristic similarity across various glacier forelands in the third pole为题发表于国际知名学术期刊Global and Planetary Change上。兰州交通大学魏天锋副教授为本文第一作者,西北研究院上官冬辉研究员为本文通讯作者。研究得到中国科学院战略性先导科技专项(A类)和国家自然科学基金等项目的资助。 论文链接:https://doi.org/10.1016/j.gloplacha.2025.104916 (A)研究区地理区位图,(B)被研究冰川在小冰期和2019年的冰川末端海拔,(C)被研究冰川在小冰期至2019年间的冰川退缩距离
2025-06-09 中国科学院西北生态环境资源研究院Glacier forelands provide ideal natural laboratories for studying primary vegetation succession. However, understanding of vegetation dynamics on glacier forelands in the Third Pole (TP) region remains limited. In this study, we employed field sampling and aerial photography to investigate key vegetation parameters (species composition, species diversity, and fractional vegetation cover (FVC)) along chronosequences on nine representative glacier forelands of the TP, spanning continental, subcontinental, and maritime glacier types, then analyzed vegetation changes along successional gradients and assessed floristic similarity both within and among the glacier forelands. Our results showed that species diversity and FVC generally exhibited increasing trends, with fluctuations from young to old forelands. These parameters increased more rapidly on maritime glacier forelands. Plant life-forms were similar during the early stages across all forelands but began to diverge as succession progressed, particularly between different glacier types. Furthermore, floristic similarity was observed between glacier forelands, with the highest similarity occurring between forelands of the same glacier type in adjacent geographic locations. Our findings highlight the critical roles of local climate and geographic factors in shaping proglacial ecosystems and flora, providing a scientific basis for understanding the effects of climate change on proglacial ecosystems and guiding biodiversity conservation efforts.
Late frost is a major challenge to stone and pome fruit production in northern New Mexico. In this study, we planted three cultivars of peach (Prunus persica L.)-Challenger, China Pearl, and Contender-on three rootstocks-Nemaguard (P. persica), GF677 (P. persica 3 P. dulcis), and RootpacVR R (P. cerasifera 3 P. dulcis)-in a high tunnel outfitted with thermostat-controlled propane heaters and fans to assess the feasibility of frost protection during bloom and fruitlet stage. In 2017, we planted the trees on Nemaguard rootstocks at 4 3 10 ft spacing and trained them in an open vase system. Due to severe leaf chlorosis, two rows of trees were removed and tissue cultured GF677 and RootpacVR R were planted in May 2018 and budded onsite in Aug 2018. In 2021, we began securing the sidewalls and the doors of the high tunnel and setting up heaters, which we continued until 2023. In 2021, it appeared that buds were damaged by extreme cold sometime in February, before the high tunnel was closed. In 2022 and 2023, the high tunnel system was sufficient to protect blooms and fruitlets from frost and yielded an average of 15.8 kg/tree in 2022 and 12.3 kg/tree in 2023. There was no significant difference between the cultivars in either year. There were, however, significant differences between rootstocks in 2022, with Nemaguard averaging 24.3 kg/tree across cultivars, whereas GF677 and RootpacVR R averaged 11.2 and 11.8 kg/tree, respectively, across cultivars because trees on Nemaguard rootstock were planted almost 2 years earlier than the rest. Comparing peach rootstocks, GF677 and RootpacVR R were more suitable for high pH soil in New Mexico than Nemaguard. Cherry had limited fruit set during this study. In 2022 and 2023, we observed blackened pistils and deformed flowers without petals, stamens, and pistils. More research is needed for cherry high tunnel production in northern New Mexico.
The use of chemical pesticides in agriculture leads to the accumulation of harmful compounds in soil and plants that can cause diseases of humans and animals. The biological method of plant protection is a promising alternative to chemical pesticides. The purpose of this study was to analyze the antagonistic activity of the Acinetobacter sp. GET13 strain against common bacterial and fungal pathogens of plant diseases in in vitro and in planta experiments. As a result, the effect of the bacterium on the growth of phytopathogenic bacteria (Clavibacter michiganensis, Erwinia carotovora, Pectobacterium carotovorum and Pseudomonas syringae), as well as phytopathogenic fungi (Helminthosporium sativum, Piricularia oryzae.) that cause serious damage to agriculture, was studied. To confirm the results obtained in these experiments, an in planta experiment was conducted on Phaseolus vulgaris (L.) The effectiveness of Acinetobacter GET13 strain for plant protection against phytopathogens was proved based on the results of taking into account the linear function between weight and volume parameters of plants at the end of the experiment. Therefore, this strain has the potential to create a biological product.
The restraining effect of soilbags inhibits soil dilatancy, enhancing the strength and stiffness of the wrapped soil. As a permanent slope protection structure (SSPS), the application of counterpressure enhances stability by improving slope surface stiffness and limiting deformation. While reinforced slopes have been extensively studied, mechanistic investigations into the stability and failure processes of SSPS remain limited. This study numerically investigated the macro-meso mechanisms of SSPS instability using the discrete element method. Macroscopically, rainfall infiltration increases water absorption, resulting in longitudinal settlement, deformation, and eventual instability. With a friction coefficient of 0.5, the lower soilbags resist sliding forces until the front soilbags are damaged. Inadequate sufficient friction causes the front soilbags to be displaced outward, leading to structural collapse as the lower soilbags bear the additional load. Microscopically, geosynthetic wrapping restrains soil dilatancy, promoting tighter particle arrangements and secondary reinforcement through soilbag expansion. During instability, primary contact forces concentrate on longitudinal settlement, vertical back pressure, and downslope sliding, with force chain evolution revealing slip band formation. Soilbags facilitate coordinated particle deformation and stress distribution, transitioning from anisotropic to isotropic states as instability progresses. These findings enhance the understanding of SSPS instability mechanisms, providing guidance for more reliable design and construction practices.