As a relatively new method, vacuum preloading combined with prefabricated horizontal drains (PHDs) has increasingly been used for the improvement of dredged soil. However, the consolidation process of soil during vacuum preloading, in particular the deformation process of soil around PHDs, has not been fully understood. In this study, particle image velocimetry technology was used to capture the displacement field of dredged soil during vacuum preloading for the first time, to the best of our knowledge. Using the displacement data, strain paths in soil were established to enable a better understanding of the consolidation behavior of soil and the related pore water pressure changes. The effect of clogging on the deformation behavior and the growth of a clogging column around PHD were studied. Finite element analysis was also conducted to further evaluate the effects of the compression index (lambda) and permeability index (ck) on the soil deformation and clogging column. Empirical equations were proposed to characterize the clogging column and to estimate the consolidation time, serving as references for the analytical model that incorporates time-dependent variations in the clogging column for soil consolidation under vacuum preloading using PHDs.
The use of horizontal drains assisted by vacuum loading is an effective method for speeding up the consolidation of dredged soil slurry. However, few studies developed models for the large strain consolidation of clayey slurry with prefabricated horizontal drains (PHDs) under self-weight and vacuum loading considering the effects of nonlinear compression and creep. This study introduces a PHD-assisted finite strain consolidation model considering nonlinear compression and limited creep by incorporating an improved elasto-viscoplastic constitutive equation. Firstly, the governing equations for the consolidation of very soft soil with PHDs were derived and solved by the finite-difference method. Subsequently, the proposed consolidation model was verified by comparing the calculations with the finite element solutions, a laboratory model test, and a field trial performed in Hong Kong. Good agreement with the numerical solutions and measured results indicates that the proposed model can capture the consolidation features with PHD combining staged filling and time-dependent vacuum loading. Then, the proposed model was used to estimate a self-weight consolidation test and field test in Japan to show the performance of the proposed model. Finally, parametric studies were conducted to explore the influence of nonlinear compression and creep on the consolidation of soft soil with PHDs.
This paper offers valuable insights for advancing the consolidation of dredged slurry, alleviating blockage, and the application of vacuum preloading-airbag pressurization (VP-AP) technology in engineering practice. This study conducted laboratory model tests on the consolidation of sludge using prefabricated vertical drains-vacuum preloading, prefabricated horizontal drains-vacuum preloading, and VP-AP methods to further investigate the effectiveness of the VP-AP technique in strengthening the consolidation of dredged slurry. Comparative analysis was conducted on the macroscopic and microscopic differences in soil drainage characteristics, settlement, water content, shear strength, and soil particle morphology under the three treatment methods. The results show that the VP-AP method surpasses traditional vacuum preloading techniques in soil consolidation, effectively guaranteeing the consolidation of deep soil layers and enhancing the uniformity and stability of foundation strength. In addition, the microstructural analysis reveals that the VP-AP method can effectively mitigate the decrease in drainage efficiency caused by the clogging of the PVD and improve the structure of the soils, allowing a significant increase in the mechanical properties of the soils. In conclusion, the VP-AP technology demonstrates significant advantages in drainage efficiency, consolidation effectiveness, thus it has a widespread application potential in engineering practices for treating soft ground and deserves further in-depth study.
Nowadays, the utilization of prefabricated vertical drains (PVDs) or prefabricated horizontal drains (PHDs) in combination with vacuum preloading (VP) has emerged as a prevalent and effective strategy for treating dredged slurry. Nevertheless, both of these methods possess certain inherent limitations. In this study, three groups of parallel model experiments are conducted to compare the effectiveness of PVDs, PHDs and PHDs-PVDs under step VP in treating dredged slurry. Firstly, the water discharge, settlement and pore water pressure are monitored during the experiments. Then, the shear strength and water content of the soil at various locations after experiments are measured and the soil profiles at different cross sections are gauged. Additionally, soil excavation is conducted to evaluate the deformation characteristics of PHDs and PVDs. Finally, a scanning electron microscopy analysis is to assess the clogging of filter membranes. The results indicate that the proposed method can combine the advantages of both PHDs and PVDs, effectively enhancing the treatment effectiveness of the slurry. These findings elucidate the dewatering and reinforcement mechanism of PHDs-PVDs-VP and provide valuable insights for its practical engineering application.